Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 11, 2018

Semantics of Exceptions

Continuations

Reification of what happens next

. Captures the remainder of the computation at a given

point in a computation

Example:
f(x, y) + z
\ '] |\ _J

Currently continuation
evaluating

More Continuation
Examples

. Tail calls

A function call is a tail call iff the continuation of the
call in the current method is empty; i.e., the
continuation is returning to the parent caller.

1T (X) y else z
Continuation of x is y when x is true, and z otherwise

- f(x match {case A => {..} case B => {..}})
Continuation of case A => {...} is to call the function f
with the resulting value

Semantics of Exceptions

Thrown exceptions cause a sudden change in a
program’s flow of control

Exceptions cause the current continuation to be
replaced with an error handler

The catch block of the closest enclosing try block is
the current error handler (if it has a matching case)

If there is no error handler, then evaluation ends in an
error state with the thrown exception value

Try/Catch Blocks

try {
expression,
}

catch {
case ExceptionPattern; => expression;
case ExceptionPattern, => expression,

Exception Reduc

tion Rules

To reduce an expression throw x, where x has already been

reduced to some exception value:

Replace the entire body of the closest-enclosing try block with

throw X

If one of the case clauses in the corresponding catch block

matches the exception x, then reduce t

ne try/catch block to the

case’s expression (just like you would c

o for a match block)

If none of the cases match, then propagate throw x to the next-

closest enclosing try block

If there are no more enclosing try bloc
remainder of the program with throw

7

ks, then replace the entire
x as the final result

Reducing to an Error

require(false) w»
throw new IllegalArgumentException()

1 /0w
throw new ArithemeticException()

{
val x: List[Int]
val List(y, z) =

= Nil
X
} e

throw new MatchError()

Try/Catch Example

case : AssertionError => -1

case : MatchError => -2
}
}
catch {
case : Exception => -3

\ _

Try/Catch Example

5 + throw new ArithmeticException()

}

catch {
case : AssertionError => -1

case : MatchError => -2
}
}
catch {
case : Exception => -3

}

10

Try/Catch Example

throw new ArithmeticException()

}

catch { n
case : AssertionError => -1
case : MatchError => -2

} .

}
catch {
case : Exception => -3

}

11

—

No matching
case clause

Try/Catch Example

100 +

try {
throw new ArithmeticException()

}

catch { ,
case : Exception => -3 «—__ Matching

} case clause

12

Try/Catch Example

100 + { -3} = 97

Expressions that Throw

. ArithmeticException: divide by zero

. NoSuchElementException:
Nil.head, Map(1l-2).apply(3), ..

. ArraylndexOutOfBoundsException

. MatchError

. AssertionError: assert, ensuring clause failures

lllegal ArgumentException: require clause failure

14

Implicit Conversions

https://docs.scala-lang.org/tour/implicit-conversions.html

15

Value Classes

https://docs.scala-lang.org/overviews/core/value-classes.html

16

