
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 11, 2018



Semantics of Exceptions

2



Continuations
• Reification of what happens next

• Captures the remainder of the computation at a given 
point in a computation

• Example:

3

f(x, y) + z

Currently
evaluating

Continuation



More Continuation 
Examples

• Tail calls
A function call is a tail call iff the continuation of the 
call in the current method is empty; i.e., the 
continuation is returning to the parent caller.

• if (x) y else z
Continuation of x is y when x is true, and z otherwise

• f(x match {case A => {…} case B => {…}})
Continuation of case A => {…} is to call the function f
with the resulting value

4



Semantics of Exceptions
• Thrown exceptions cause a sudden change in a 

program’s flow of control

• Exceptions cause the current continuation to be 
replaced with an error handler

• The catch block of the closest enclosing try block is 
the current error handler (if it has a matching case)

• If there is no error handler, then evaluation ends in an 
error state with the thrown exception value

5



Try/Catch Blocks

try {
expression0

}
catch {

case ExceptionPattern1 => expression1
case ExceptionPattern2 => expression2
…

}

6



Exception Reduction Rules
To reduce an expression throw x, where x has already been 
reduced to some exception value:

• Replace the entire body of the closest-enclosing try block with 
throw x

• If one of the case clauses in the corresponding catch block 
matches the exception x, then reduce the try/catch block to the 
case’s expression (just like you would do for a match block)

• If none of the cases match, then propagate throw x to the next-
closest enclosing try block

• If there are no more enclosing try blocks, then replace the entire 
remainder of the program with throw x as the final result

7



Reducing to an Error
require(false) ↦
throw new IllegalArgumentException()

1 / 0 ↦
throw new ArithemeticException() 

{
val x: List[Int] = Nil
val List(y, z) = x
…

} ↦
throw new MatchError()

8



Try/Catch Example
100 +
try {

try {
5 + 1 / 0

}
catch {

case _: AssertionError => -1
case _: MatchError => -2

}
}
catch {

case _: Exception => -3
}

9



Try/Catch Example
100 +
try {

try {
5 + throw new ArithmeticException()

}
catch {

case _: AssertionError => -1
case _: MatchError => -2

}
}
catch {

case _: Exception => -3
}

10



Try/Catch Example
100 +
try {

try {
throw new ArithmeticException()

}
catch {

case _: AssertionError => -1
case _: MatchError => -2

}
}
catch {

case _: Exception => -3
}

11

No matching
case clause



Try/Catch Example
100 +
try {

throw new ArithmeticException()
}
catch {

case _: Exception => -3
}

12

Matching
case clause



Try/Catch Example
100 + { -3 }

13

↦ 97



Expressions that Throw
• ArithmeticException: divide by zero

• NoSuchElementException:
Nil.head, Map(1→2).apply(3), …

• ArrayIndexOutOfBoundsException

• MatchError

• AssertionError: assert, ensuring clause failures

• IllegalArgumentException: require clause failure

14



Implicit Conversions
https://docs.scala-lang.org/tour/implicit-conversions.html

15



Value Classes
https://docs.scala-lang.org/overviews/core/value-classes.html

16


