Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 27, 2018

Pseudo-Random Number Generation

. There are many approaches to generating a pseudo-
random stream of Int values

. One common approach is to define a linear congruential
generator (LCG):

Xnt1 = (aX,, +c¢) mod m

. The pseudo-random numbers are the elements of this

recurrence

Linear Congruential
Generators

. LCGs can produce generators capable of passing formal
tests for randomness

. The quality of the results is highly dependent on the
initial values selected

. Poor statistical properties

. Not well suited for cryptographic purposes

A Linear Congruent Generator
(C++11minstd rand)

def makeRandomGenerator(): () => Int = {

val a = 48271
val b =0
val m = Int.MaxValue

var seed = 2

def 1nner() = {
seed = (a*seed + b) S m
seed

}

inner

A Linear Congruent Generator
(C++11minstd rand)

val g = makeRandomGenerator()<E> »
val ¢
< def 1inner() = {

seed = (a*seed + b) % m

seed

48271

0
Int.MaxValue
d =2 >

,
val a
val b
m
S

val

var Se

D

g()<E> »
< def 1nner() = {
seed = (a*seed + b) % m

seed
o
val a = 48271
val b =0
val m = Int.MaxValue

var seed = 3 >()<E> »

seed = (a*seed + b) % m

seed,
< val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 3 >
seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271

val b = 0

val m = Int.MaxValue

var seed = 3 >

seed, <val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 96542>

96542

And now the environment closing over
generator g binds seed to 96542.

Purely Functional State

Rolling a Die

. Suppose we want to implement a function that
simulates the rolling of a six-sided die

. The result of calling the function should be a random
number from 1to 6

Rolling a Die

def rollDie: Int = {
val rng = new scala.util.Random
rng.nextInt(6) + 1
} \\\\\\\\\
The call to nextInt will return a value from 0 to 5,
not 1 to 6..

Stateful Programs and

Debugging

. Because of the state encapsulated in our random

number generator:
. Repeatability of testing is hard
. Bugs are difficult to reduce

. We would like to use effects when necessary without
losing the benefits of referential transparency

Purely Functional Random
Number Generation

trait RandomNumberGenerator {
def nextInt: (Int, RandomNumberGenerator)

}

Purely Functional Random
Number Generation

case class SimpleRNG(seed: Int) extends RandomNumberGenerator {

val a = 48271
val b = 0
val m = Int.MaxValue

def nextInt: (Int, RandomNumberGenerator) = {
val newSeed = (a*seed + b) S m
val newRNG = SimpleRNG(newSeed)
(newSeed, newRNG)

}
}

Threading State Through
a Sequence of Statements

val rng = SimpleRNG(3)
val (n, rng2) = rng.nextInt
(n + 1, rng2)

Transforming Stateful APls to
Functional APls

trait Foo {
private var s: State = MyState
def bar: Bar
def baz: Int

}

becomes

trait Foo {
def bar: (Bar, FooState)
def baz: (Int, FooState)

}

A Better API for State Actions

Explicitly threading state from one function application
to the next is tedious and error prone

. We would like to define combinators that pass the state
from one application to the next automatically

For now, we consider the state of our program to be
defined entirely by the state of our random number
generator

A Dream

val rng = SimpleRNG(3)

veryHelpfulFunction(
val n = rng.nextInt,
n + 1

)

A Dream

val rng = SimpleRNG(3)

veryHelpfulFunction {
val n = rng.nextInt,
n + 1

}

A Dream

val rng = SimpleRNG(3)

veryHelpfulFunction {
val n = rng.nextInt,
n + 1

}

-

(4, rngl)

A More Realistic Dream

val rng = SimpleRNG(3)

veryHelpfulFunction {
rng.nextlInt,
(n: Int) == n + 1

}

-

(4, rngl)

A More Realistic Dream

val rng = SimpleRNG(3)

def run = veryHelpfulFunction {
_.hextInt,

(n: Int) == n + 1
}

run(rng)

=

(4, rngl)

Defining a Type Alias for State
Actions

type StateAction[+A] =
RandomNumberGenerator => (A, RandomNumberGenerator)

A Simple State Action

val nextInt: StateAction[Int] = .nextInt

Transforming State Actions
With the Map Combinator

def veryUsefulFunction[A,B] (action: StateAction[A],
f: A => B): StateAction[B] =
state => {
val (a, state?2) = action(state)
(f(a), state?)

}

Transforming State Actions
With the Map Combinator

def map[A,B](action: StateAction[A],
f: A => B): StateAction[B] =
state => {
val (a, state?2) = action(state)
(f(a), state?)

}

Transforming State Actions
With the Map Combinator

case class StateAction[S,+A](run: S => (A,S))
extends Functionl[S, (A,S)] {
def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] =
StateAction { s: S =>
val (a, s2) = run(s)
(f(a), s2)
}

Reformulating nextint as a
State Action

val nextInt =
StateAction {
(rng: RandomNumberGenerator) => rng.nextInt

}

A Simple State Action

val nextInt = StateAction(.nextInt)

A More Realistic Dream

val rng = SimpleRNG(0)

def run = rng.nextInt.map {
(n: Int) =>n + 1

}

A More Realistic Dream

val rng = SimpleRNG(0)
def run = {
for {
n <- rng.nextlInt
}
yield n + 1

}

A More Realistic Dream

val rng = SimpleRNG(0)

def run = {
for {
n <- .nextInt
}
yield n + 1
}

run(rng)

A "Compound” State Action

def nonNegativelnt = {
for {
n <- .nextlInt
} yield {
if (n == Int.MinValue) 0
else if (n < Q) -n
else n

Using Map

def nonNegativeEven: StateAction[Int] =
for {

1 <- nonNegativelnt

}
ylield 1 - (1 % 2)

Random Non-Negative
Numbers in a Range
(Attempt 1)

// INCORRECT

def nonNegativelLessThan(n: Int): StateAction[Int] =
for {

1 <- nonNegativelnt

}

yield 1 % n

This definition skews the results because
Int. MaxValue might not be divisible by n.

Random Non-Negative
Numbers in a Range
(Attempt 2)

// INCORRECT
def nonNegativelessThan(n: Int): StateAction[Int] =
for {
1 <- nonNegativelnt
} yield
val mod = 1 % n
if (1 + (n - 1) - mod >= 0) mod
else nonNegativelLessThan(n)

But this version does not pass type checking!

Random Non-Negative
Numbers in a Range
(Attempt 2)

. The problem with our Attempt 2 is that the recursive
call to nonNegativelLessThan produces a
StateAction[Int]

. Our map combinator expects an Int result from the
mapped function, not a StateAction[Int]

. To get a better idea as to how to define
nonNegativelLessThan, let us try defining it
without combinators

Random Non-Negative
Numbers in a Range
(Attempt 3)

def nonNegativelLessThan(n: Int): StateAction[Int] = { rng =>
val (i, rng2) = nonNegativelInt(rng)
val mod = 1 % n
if (1 + (n - 1) - mod >= 0) (mod, rng2)
else nonNegativelLessThan(n)(rng2)

This version works, but now we are back to threading
state explicitly.

We need a new combinator.

StateAction with FlatMap

case class StateAction[S,+A](run: S => (A,S))
extends Functionl]S, (A,S)] {
def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] = StateAction { s =>
val (a, s2) = run(s)
(f(a), s2)

}

def flatMap[B](f: A => StateAction[S,B]): StateAction[S,B] =
StateAction { s =>
val (a, s2) = run(s)
f(a)(s2)
}

Every Partial Application of the
StateAction Type Defines a Monad

type RNGStateAction[A] =
StateAction[RandomNumberGenerator, A]

Random Non-Negative
Numbers in a Range
(Attempt 4)

def nonNegativelLessThan(n: Int): StateAction[Int] = {
nonNegativelnt.flatMap { 1 =>
val mod = 1 % n
if (i + (n - 1) - mod >= 0) (mod,)
else nonNegativelLessThan(n)

}
}

We have almost completely eliminated state threading,
except for one underscore.

Random Non-Negative
Numbers in a Range
(Attempt 4)

. We now have the inverse of our earlier problem:

. Our flatMap combinator expects a
StateAction[Int] result from the mapped
function, not an Int

. We can address this problem by wrapping part of the
flatMapped function in an application of the unit
constructor for StateActions

A "No-Op” Abstraction Over
State Actions

def unit[A](a: A): StateAction[A] =
rng => (a, rng)

def rngUnit[A](a: A): RngStateAction[A] =
StateAction(s => (a, s))

Random Non-Negative
Numbers in a Range
(Attempt 5)

def nonNegativelLessThand4point5(n: Int):
StateAction[RandomNumberGenerator,Int] = {
nonNegativelInt.flatMap { 1 =>
val result = 1 % n
if (1 + (n - 1) - result >= 0) unit(result)
else nonNegativelLessThan5(n)
}
}

Random Non-Negative
Numbers in a Range
(Attempt 5)

def nonNegativelLessThand4point5(n: Int):
StateAction[RandomNumberGenerator,Int] = {
nonNegativelInt.flatMap { 1 =>
val result = 1 % n
if (1 + (n - 1) - result >= 0) unit(result)
else nonNegativelLessThan5(n)
} map (j => j)

} \
A trailing map of the identity function defines
an equivalent function.

Using For-Expression Syntax

def nonNegativelLessThan(n: Int): RngStateAction[Int] = {
for {
1 <- nonNegativelnt
result <- {
val randN = 1 % n
if (1 + (n - 1) - randN >= 0) unit(randN)
else nonNegativelLessThan(n)
}
}
yield result

}

A General StateAction Class

case class StateAction[S,+A](run: S => (A,S))
extends Functionl]S, (A,S)] {
def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] = StateAction { s =>
val (a, s2) = run(s)

(t(a), s2) «_ The map method similarly applies the operation f
I and pairs the result with the updated state.

def flatMap[B](f: A => StateAction[S,B]): StateAction[S,B] =
StateAction { s =>
val (a, s2) = run(s)
f(a)(s2)
N
} This is the key right here! The flatMap method

does the work of threading the updated state.

Revisiting RollDie

def rollDie: StateAction[Int] = nonNegativelLessThan(6)

Revisiting RollDie

def rollDie: StateAction[Int] =
map (nonNegativelessThan(6))(+ 1)

Revisiting RollDie

def rollDie =
for {
1 <- nonNegativelLessThan(6)

}
yield (i + 1)

