COMP 311
Functional Programming

Coroutines

Guest Lecture, Oct 27, 2015.
Shams Imam, Rice PhD

Two Sigma Investments, LLC



Review: Subroutines (aka Functions)

A block of executable code
e Exactly one point of entry

 Once a subroutine exits, it is done



Review: Subroutines relationships

* A subroutine may call another subroutine

e Starts a caller-callee relationship
— Control transferred to the entry point of callee
— Callee local data created from scratch
— Callee runs to completion and returns
— Caller resume computation from call site



Review: Subroutines control flow

A() B() C()

|

3

¥




Review: Subroutines Example

object ProducerConsumerSubroutine {
def main(args: Array[String]) {

var (itemsConsumed, consumerResult) = (@, OL)
val numItems: Int = 10
val queue = new util.LinkedList[Long]()
for (1 <- 1 to numItems) {
producer(numItems, 1, queue)

val (a, b) = consumer(queue)
1temsConsumed = a

result = b
}
println("Items Consumed = " + itemsConsumed)
println("Sum = " + consumerResult)



Review: Subroutines Example

object ProducerConsumerSubroutine {

def producer(numItems, itemIndex, queue) = {
1f (itemIndex >= numItems)
queue.offer(-1)
val item = 1L * itemIndex
queue.offer(item)
by
def consumer(queue) = {

val i1tem = queue.poll()
var (itemsConsumed, itemsSum) = (@, OL)

1f (item !'= -1) {
1temsConsumed += 1
1temsSum += item

}

(1temsConsumed, 1itemsSum)

¥
}



Review: Subroutines relationships

* Caller-callee relationship
— Control transferred to the entry point of callee
— Callee local data created from scratch
— Callee runs to completion and returns
— Callee local data is destroyed
— Caller resume computation from call site

* |f Caller calls Callee again, whole process is
repeated



Review: Subroutines Example

object ProducerConsumerSubroutine {

private var (itemsConsumed, itemsSum) = (@, OL)
def producer(numItems, itemIndex, queue) = {
1f (itemIndex >= numItems)
queue.offer(-1)
val item = 1L * itemIndex
queue.offer(item)
ks
def consumer(queue) = {
val item = queue.poll()
1f (item != -1) {
1temsConsumed += 1
1temsSum += item

}

(1temsConsumed, 1itemsSum)

}
¥



Imagine a procedure that
"remembers”

its state across calls



Example control flow

Al)

B() C()

6

10



Coroutines

A block of executable code
Exactly one point of entry

Coroutines can exit by calling other coroutines
— Typically using the yield statement

— Yield indicates that the routine is done executing for
now

— Coroutine may be resumed from the yield point

One or more points of re-entry



Coroutines (contd)

* Allow for suspending and resuming execution at
vield points

e Coroutines hold state between invocations

— parameters and local variables are preserved between
invocations

— Nested call chains



Coroutines Example

object ProducerConsumerCoroutine {
def main(args: Array[String]) {

val numlItems: Int = 10
val queue = new util.LinkedList[Long]()

runCoroutines("producer”", () => {
coroutine("producer", () => producer(numltems, queue))
coroutine("consumer"”, () => consumer(queue))
1)
// wait for one of the registered coroutines to return
val (itemsConsumed, result) = coroutineResult("consumer")

println("Items Consumed = " + itemsConsumed)

println("Sum = " + result)

13



Coroutines Example

object ProducerConsumerCoroutine {

def producer(numltems: Int, queue: util.Queue[lLong]) = {
var itemIndex = 1
while (itemIndex <= numItems) {
queue.offer(itemIndex); yieldTo("consumer™)
itemIndex += 1
}
queue.offer(-1); yieldTo("consumer™)
hy
def consumer(queue: util.Queue[Long]): (Int, Long) = {
var (itemsConsumed, itemsSum) = (@, OL)
var item = queue.poll()
while (item != -1) {
1temsConsumed += 1; itemsSum += item
yieldTo("producer™)
i1tem = queue.poll()
¥

(1temsConsumed, 1itemsSum)

P}



Class Exercise:
Write Code for Example control flow

A() B() C()

6




Iterator Example

object FibonacciGeneratorCoroutine {
def printFib(numItems: Int) = {
var itemIndex = 1
while (itemIndex <= numItems) {
yieldTo("fib")
itemIndex += 1

ky
hy
def fib() = {
var f1l = 1; println(fl); yieldToCaller()
var f2 = 1; println(f2); yieldToCaller()
while (true) {
val f3 = f1 + f2; f1 = f2; f2 = f3
println(f3); yieldToCaller()
hy
hy



Observation

* Any subroutine can be translated to a coroutine
which does not call yield.

e Coroutines are more general than subroutines!



Implementation Details

* Rely on Scala’s support for Delimited
Continuations using shift/reset (
http://infoscience.epfl.ch/record/149136/files/icfp113-rompf.pdf )

 Taughtin COMP 411: Continuations and
Continuation-passing style transforms




Current motivations for Coroutines

* Mainly in the Concurrency/Parallelism world

— Use coroutines to build efficient runtimes

* Overcoming the limitations of a single-threaded
process

* Achieve better computational performance



Concurrent/Parallel Programming

* Most current runtimes rely on O/S-level threads
to execute work in parallel

* |deally execute one-thread (worker) per core
* No overheads from thread context switches



Issues with OS Threads
Blocking Operations

* When worker encounters blocking operation =>

— Spawn another worker to maintain parallelism

 E.g. One thread each for the producer and
consumer

* Not scalable when we have hundreds of
interacting producers and consumers!



Concurrent Programming

* Coroutines as user-level threads
— Another level of abstraction
— Process => OS Threads => User-level threads
— Context switch of coroutines is much cheaper

e Concurrent Scheduler

— Manages interactions between coroutines
— Determines when to resume coroutines



Learn more about use of
Coroutines in COMP 322

 Habanero-Java library uses Coroutines to
implement its Cooperative runtime

* Users write programs unaware of presence of

Coroutines

— Compiler and runtime uses Coroutines behind the
scenes



Slow Down w.r.t. HHCOOP

[Lower is better]

Coroutines Performance Gains

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

FIB KNPSCK NQUEEN QCKSRT SERIES SMTWAT Geo.
(50.29) (6.35) (4.04) (14.64) (6.77) (3.63) Mean

Benchmark Name with HJCOOP time in secs below

BB JUCBLK [0 HJBLK . HJCOOP]

24



Acknowledgments

http://stackoverflow.com/questions/24780935/difference-between-
subroutine-co-routine-function-and-thread

https://en.wikipedia.org/wiki/Coroutine#Comparison with subroutines
http://jim-mcbeath.blogspot.com/2010/09/scala-coroutines.html

https://www.cs.purdue.edu/homes/suresh/390C-Spring2012/lectures/
Lecture-2.pdf

25



