COMP 311
Functional Programming

Coroutines

Guest Lecture, Oct 27, 2015.
Shams Imam, Rice PhD

Two Sigma Investments, LLC



Review: Subroutines (aka Functions)

A block of executable code
e Exactly one point of entry

 Once a subroutine exits, it is done



Review: Subroutines relationships

* A subroutine may call another subroutine

e Starts a caller-callee relationship
— Control transferred to the entry point of callee
— Callee local data created from scratch
— Callee runs to completion and returns
— Caller resume computation from call site



Review: Subroutines control flow
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Review: Subroutines Example

object ProducerConsumerSubroutine {
def main(args: Array[String]) {

var (itemsConsumed, consumerResult) = (@, OL)
val numItems: Int = 10
val queue = new util.LinkedList[Long]()
for (1 <- 1 to numItems) {
producer(numItems, 1, queue)

val (a, b) = consumer(queue)
1temsConsumed = a

result = b
}
println("Items Consumed = " + itemsConsumed)
println("Sum = " + consumerResult)



Review: Subroutines Example

object ProducerConsumerSubroutine {

def producer(numItems, itemIndex, queue) = {
1f (itemIndex >= numItems)
queue.offer(-1)
val item = 1L * itemIndex
queue.offer(item)
by
def consumer(queue) = {

val i1tem = queue.poll()
var (itemsConsumed, itemsSum) = (@, OL)

1f (item !'= -1) {
1temsConsumed += 1
1temsSum += item

}

(1temsConsumed, 1itemsSum)

¥
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Review: Subroutines relationships

* Caller-callee relationship
— Control transferred to the entry point of callee
— Callee local data created from scratch
— Callee runs to completion and returns
— Callee local data is destroyed
— Caller resume computation from call site

* |f Caller calls Callee again, whole process is
repeated



Review: Subroutines Example

object ProducerConsumerSubroutine {

private var (itemsConsumed, itemsSum) = (@, OL)
def producer(numItems, itemIndex, queue) = {
1f (itemIndex >= numItems)
queue.offer(-1)
val item = 1L * itemIndex
queue.offer(item)
ks
def consumer(queue) = {
val item = queue.poll()
1f (item != -1) {
1temsConsumed += 1
1temsSum += item

}

(1temsConsumed, 1itemsSum)

}
¥



Imagine a procedure that
"remembers”

its state across calls



Example control flow
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Coroutines

A block of executable code
Exactly one point of entry

Coroutines can exit by calling other coroutines
— Typically using the yield statement

— Yield indicates that the routine is done executing for
now

— Coroutine may be resumed from the yield point

One or more points of re-entry



Coroutines (contd)

* Allow for suspending and resuming execution at
vield points

e Coroutines hold state between invocations

— parameters and local variables are preserved between
invocations

— Nested call chains



Coroutines Example

object ProducerConsumerCoroutine {
def main(args: Array[String]) {

val numlItems: Int = 10
val queue = new util.LinkedList[Long]()

runCoroutines("producer”", () => {
coroutine("producer", () => producer(numltems, queue))
coroutine("consumer"”, () => consumer(queue))
1)
// wait for one of the registered coroutines to return
val (itemsConsumed, result) = coroutineResult("consumer")

println("Items Consumed = " + itemsConsumed)

println("Sum = " + result)
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Coroutines Example

object ProducerConsumerCoroutine {

def producer(numltems: Int, queue: util.Queue[lLong]) = {
var itemIndex = 1
while (itemIndex <= numItems) {
queue.offer(itemIndex); yieldTo("consumer™)
itemIndex += 1
}
queue.offer(-1); yieldTo("consumer™)
hy
def consumer(queue: util.Queue[Long]): (Int, Long) = {
var (itemsConsumed, itemsSum) = (@, OL)
var item = queue.poll()
while (item != -1) {
1temsConsumed += 1; itemsSum += item
yieldTo("producer™)
i1tem = queue.poll()
¥

(1temsConsumed, 1itemsSum)

P}



Class Exercise:
Write Code for Example control flow

A() B() C()
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Iterator Example

object FibonacciGeneratorCoroutine {
def printFib(numItems: Int) = {
var itemIndex = 1
while (itemIndex <= numItems) {
yieldTo("fib")
itemIndex += 1

ky
hy
def fib() = {
var f1l = 1; println(fl); yieldToCaller()
var f2 = 1; println(f2); yieldToCaller()
while (true) {
val f3 = f1 + f2; f1 = f2; f2 = f3
println(f3); yieldToCaller()
hy
hy



Observation

* Any subroutine can be translated to a coroutine
which does not call yield.

e Coroutines are more general than subroutines!



Implementation Details

* Rely on Scala’s support for Delimited
Continuations using shift/reset (
http://infoscience.epfl.ch/record/149136/files/icfp113-rompf.pdf )

 Taughtin COMP 411: Continuations and
Continuation-passing style transforms




Current motivations for Coroutines

* Mainly in the Concurrency/Parallelism world

— Use coroutines to build efficient runtimes

* Overcoming the limitations of a single-threaded
process

* Achieve better computational performance



Concurrent/Parallel Programming

* Most current runtimes rely on O/S-level threads
to execute work in parallel

* |deally execute one-thread (worker) per core
* No overheads from thread context switches



Issues with OS Threads
Blocking Operations

* When worker encounters blocking operation =>

— Spawn another worker to maintain parallelism

 E.g. One thread each for the producer and
consumer

* Not scalable when we have hundreds of
interacting producers and consumers!



Concurrent Programming

* Coroutines as user-level threads
— Another level of abstraction
— Process => OS Threads => User-level threads
— Context switch of coroutines is much cheaper

e Concurrent Scheduler

— Manages interactions between coroutines
— Determines when to resume coroutines



Learn more about use of
Coroutines in COMP 322

 Habanero-Java library uses Coroutines to
implement its Cooperative runtime

* Users write programs unaware of presence of

Coroutines

— Compiler and runtime uses Coroutines behind the
scenes



Slow Down w.r.t. HHCOOP

[Lower is better]
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