
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 13 21 October 2013

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

2 2

Coarse-Grain Parallelism (contd)!

Chapter 6 of Allen and Kennedy

•  Acknowledgment: Slides from previous offerings of COMP 515
by Prof. Ken Kennedy
— http://www.cs.rice.edu/~ken/comp515/

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

3

Chapter 6 Summary!
•  Coarse-Grained Parallelism

— Privatization
— Loop distribution
— Loop alignment
— Loop fusion
— Loop interchange
— Loop reversal
— Loop skewing
— Pipeline parallelism
— Scheduling

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

4 4

 DO I = 1,N!

S1 T = A(I)!

S2 A(I) = B(I)!

S3 B(I) = T!

 ENDDO!

 PARALLEL DO I = 1,N!

 PRIVATE t!

S1 t = A(I)!

S2 A(I) = B(I)!

S3 B(I) = t!

 ENDDO !

Scalar Privatization!
•  The analog of scalar expansion is privatization.
•  Temporaries can be given separate namespaces for each

iteration.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

5 5

We need to privatize array
variables.

For iteration J, upwards exposed
variables are those exposed due to
loop body without variables defined
earlier.

 DO I = 1,100!

S0 T(1)=X!

L1 DO J = 2,N!

S1 T(J) = T(J-1)+B(I,J) !

S2 A(I,J) = T(J)!

 ENDDO!

 ENDDO!

up(L1) = ({T (J −1)} \ {T(n) : 2 ≤ n ≤ j})

J= 2

NU

So for this fragment, T(1) is the only exposed variable.

Array Privatization!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

6 6

 PARALLEL DO I = 1,100!
 PRIVATE t(N)!

S0 t(1) = X!

L1 DO J = 2,N!

S1 t(J) = t(J-1)+B(I,J)!

S2 A(I,J)=t(J)!

 ENDDO!

 ENDDO!

Array Privatization!
•  Using this analysis, we get the following code:

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

7 7

Loop Distribution!
•  Loop distribution can convert loop-carried dependences to loop-

independent dependences.
•  Consequently, it often creates opportunity for outer-loop

parallelism.
•  However, we must add extra barriers to keep distributed loops

from executing out of order, so the overhead may override the
parallel savings.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

8 8

DO I = 2,N!

 A(I) = B(I)+C(I)!

 D(I) = A(I-1)*2.0!

ENDDO!

DO I = 1,N ! Aligned loop!

 IF (I .GT. 1) A(I) = B(I)+C(I)!

 IF (I .LT. N) D(I+1) = A(I)*2.0!

ENDDO!

Loop Alignment!
•  Many carried dependencies are due to array alignment issues.
•  If we can align all references, then dependencies would go

away, and parallelism is possible.
•  This is also related to Software Pipelining

D(2) = A(1)*2.0!

DO I = 2,N-1 ! Pipelined loop!

 A(I) = B(I)+C(I)!

 D(I+1) = A(I)*2.0!

ENDDO!

A(N) = B(N)+C(N)!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

9 9

DO I = 2,N!

 J = MOD(I+N-4,N-1)+2!

 A(J) = B(J)+C!

 D(I)=A(I-1)*2.0!

ENDDO !

D(2) = A(1)*2.0!
DO I = 2,N-1!
 A(I) = B(I)+C(I)!
 D(I+1) = A(I)*2.0!
ENDDO!
A(N) = B(N)+C(N)!

Alignment!
•  There are other ways to align the loop:

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

10 1
0

DO I = 1,N!

 A(I+1) = B(I)+C!

 X(I) = A(I+1)+A(I)!

ENDDO!

DO I = 1,N!
 A(I+1) = B(I)+C!
 ! Replicated Statement!
 IF (I .EQ 1) THEN!
 t = A(I)!
 ELSE!
 t = B(I-1)+C!
 END IF!
 X(I) = A(I+1)+t!
ENDDO!

Code Replication!
•  If an array is involved in a recurrence, then alignment isn’t

possible.
•  If two dependencies between the same statements have

different dependency distances, then alignment doesn’t work.
•  We can fix the second case by replicating code:

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

11 1
1

Strip Mining!
•  Converts available parallelism into a form more suitable for the

hardware (assume THRESHOLD = minimum iters for parallel loop)
 DO I = 1, N
 A(I) = A(I) + B(I)
 ENDDO

 ==>
 k = MAX(THRESHOLD, CEIL (N / P))
 PARALLEL DO I = 1, N, k

 DO i = I, MIN(I + k-1, N)
 A(i) = A(i) + B(i)
 ENDDO
 END PARALLEL DO

11

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

12 1
2

Loop Fusion!
•  Loop distribution was a method for separating parallel parts of

a loop.
•  Our solution attempted to find the maximal loop distribution.
•  The maximal distribution often finds parallelizable components

too small for efficient parallelism.
•  Two obvious solutions:

—  Strip mine large loops to create larger granularity.
—  Perform maximal distribution, and then fuse together parallelizable

loops.
— Both solutions can be combined as well.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

13 1
3

Definition: A loop-independent dependence between statements S1 and
S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and
L2 causes the dependence to be carried by the combined loop in the
opposite direction.

 DO I = 1,N!

S1 !A(I) = B(I)+C!

 ENDDO!

 DO I = 1,N!

S2 !D(I) = A(I+1)+E!

 ENDDO!

 DO I = 1,N!

S1 !A(I) = B(I)+C!

S2 !D(I) = A(I+1)+E!

 ENDDO!

Fusion Safety: Fusion-Preventing  
Loop-Independent Dependences!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

14 1
4

L1

L2 L3

Fusing L1 with L3 violates the
ordering constraint. {L1,L3}
must occur both before and
after the node L2.

Fusion Safety: Ordering Constraint!
•  We shouldn’t fuse loops if the fusing will violate ordering of

the dependence graph.
•  Ordering Constraint: Two loops can’t be validly fused if there

exists a path of loop-independent dependencies between them
containing a loop or statement not being fused with them i.e.,
if fusion will result in a cycle in the resulting loop-independent
dependences

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

15 1
5

Parallel loops should generally
not be merged with sequential
loops.

Definition: An edge between two
statements in loops L1 and L2
respectively is said to be
parallelism-inhibiting if after
merging L1 and L2, the
dependence is carried by the
combined loop.

 DO I = 1,N!

S1 !A(I+1) = B(I) + C!

 ENDDO!

 DO I = 1,N!

S2 !D(I) = A(I) + E!

 ENDDO!

 DO I = 1,N!

S1 !A(I+1) = B(I) + C!

S2 !D(I) = A(I) + E!

 ENDDO!

Fusion Profitability!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

16 1
6

Typed Fusion!
•  We start by classifying loops into two types: parallel and

sequential.
•  We next gather together all edges that inhibit efficient fusion,

(i.e., that connect a sequential and a parallel loops) and call
them bad edges.

•  Given a graph of loop-independent dependences (V,E), we want
to obtain a graph (V’,E’) by merging vertices of V subject to
the following constraints:

—  Bad Edge Constraint: vertices joined by a bad edge aren’t fused.
—  Ordering Constraint: vertices joined by path containing non-

parallel vertex aren’t fused

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

17 1
7

3

1 2

4

5 6

7 8

1,3 2

4

5,8 6

7

1 2

4 5

6

3

1.3

2,4,6

5,8

7

Original loop graph	

After fusing parallel loops	

 After fusing sequential loops	

Typed Fusion Example!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

18 1
8

Thus far …!
•  Single loop methods

— Privatization
— Loop distribution
— Alignment
— Code replication
— Loop fusion

•  Next, methods for perfect and imperfect loops

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

19 1
9

Loop Interchange!
•  Parallelization: move dependence-free loops to outermost level
•  Theorem 6.3

— In a perfect nest of loops, a particular loop can be parallelized at
the outermost level if and only if the column of the direction
matrix for that nest contains only ‘=‘ entries

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

20 2
0

Motivation for Loop Interchange!
 DO I = 1, N

 DO J = 1, N
 A(I+1, J) = A(I, J) + B(I, J)
 ENDDO

 ENDDO

•  Parallelizing the J loop is OK for vectorization
•  But inefficient for parallelization (N barriers)

(<, =)

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

21 2
1

Loop Interchange!
 PARALLEL DO J = 1, N

 DO I = 1, N
 A(I+1, J) = A(I, J) + B(I, J)
 ENDDO

 END PARALLEL DO

(=, <)

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

22 2
2

while L is not empty
 while there exist columns in M with all “=“
 success := true;
 l:= loop with all “=“ column;
 remove l from L;
 parallelize l at outer level;
 eliminate l’s column from M;
 end;
 if L is not empty
 select_loop_and_interchange(L);
 l:= outermost loop; remove l from L; sequentialize l;
 remove column corresponding to l from M;
 remove all rows corresponding to dependences carried by l from M;

Loop Interchange!

22

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

23 2
3

= < <
< = >
< = <

Loop Selection!
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K+1) = A(I, J-1, K) + A(I-1, J, K+2) + A(I-1, J, K)
 ENDDO
 ENDDO
ENDDO

I J K

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

24 2
4

Loop Selection!
DO I = 2, N+1

ENDDO

 PARALLEL DO K = 1, L
 A(I, J, K+1) = A(I, J-1, K) + A(I-1, J, K+2) + A(I-1, J, K)

 ENDDO

 DO J = 2, M+1

 ENDDO

= < <
< = >
< = <

< <

I J K

J K

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

25 2
5

< < = =
< = < =
< = = <
= < = =
= = < =
= = = <

Loop Selection!
•  Is it possible to derive a selection heuristic that provides

optimal code?
— NP-complete problem

•  Assume simple approach of selecting the loop with the most ‘<‘
directions to eliminate the max number of rows from the
direction matrix

— Applying to this matrix will fail

I J K L

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

26 2
6

Loop Selection!
•  Favor the selection of loops that must be sequentialized before

parallelism can be uncovered
•  If there exists a loop that can legally be moved to the

outermost position and there is a dependence for which that
loop has the only ‘<‘ direction, sequentialize that loop

•  All such loops will need to be sequentialized at some point in
the process

< = = <
= < = <
= = < <
< = = =
= < = =
= = < =

J K L I

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

27 2
7

•  Example of principles involved in heuristic loop selection

 DO I = 2, N

 ENDDO

 PARALLEL DO K = 2, L
 A(I, J, K) = A(I, J-1, K) + A(I-1, J, K-1) +
 A(I, J+1, K+1) + A(I-1, J, K+1)
 ENDDO

Loop Selection!

 DO J = 2, M

 ENDDO

= < =
< = <
= < <
< = >

I J K
< = =
= < <
< = <
= < >

J I K

< <
< >

I K

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

28 2
8

= < >
< = >

Loop Reversal!
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 ENDDO
 ENDDO
ENDDO

I J K

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

29 2
9

= < >
< = >

Loop Reversal!
DO I = 2, N+1
 DO J = 2, M+1
 DO K = L, 1, -1
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 ENDDO
 ENDDO
ENDDO

= < <
< = <

I J K I J K

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

30 3
0

After Loop Reversal & Interchange!
 DO K = L, 1, -1

 PARALLEL DO I = 2, N+1
 PARALLEL DO J = 2, M+1
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 END PARALLEL DO
 END PARALLEL DO

 ENDDO

•  Increase the range of options available for loop selection
heuristics

< = <
< < =

K I J

30

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

31 3
1

= < =
< = =
= = <
= = =

Loop Skewing!
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I, J-1, K) + A(I-1, J, K)
 B(I, J, K+1) = B(I, J, K) + A(I, J, K)
 ENDDO
 ENDDO
ENDDO

I J K

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

32 3
2

= < <
< = <
= = <
= = =

Loop Skewing!
•  Skewed using k = K + I + J yield:

 DO I = 2, N+1
 DO J = 2, M+1
 DO k = I+J+1, I+J+L
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1,

J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J,

k-I-J)
 ENDDO
 ENDDO

 ENDDO
I J k

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

33 3
3

Loop Skewing!

DO k = 5, N+M+1
 PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2)
 PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1)
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
ENDDO

< = <
< < =
< = =
= = =

k I J

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

34 3
4

Loop Skewing!
•  Transforms skewed loop into one that can be interchanged to

the outermost position without changing the meaning of the
program

•  Can be used to transform the skewed loop in such a way that,
after outward interchange, it will carry all dependences
formerly carried by the loop with respect to which it is skewed

< = <
< < =
< = =
= = =

k I J

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

35 3
5

Loop Skewing!
•  Selection Heuristics

1.  Parallelize as many loops as possible
2.  Sequentialize at most one loop to find parallelism in the current

outermost loop
3.  If 1 and 2 fails, try skewing
4.  If 3 fails, sequentialize the loop that can be moved to the

outermost position and cover the most other loops

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

36

Pipeline Parallelism!
•  Fortran command DOACROSS
•  Useful where parallelization is not available
•  High synchronization costs on old multiprocessors

— Cheaper on-chip synchronization on multicore

DO I = 2, N-1
 DO J = 2, N-1
 A(I, J) = .25 * (A(I-1, J) + A(I, J-1) + A(I+1, J) + A(I, J+1))
 ENDDO
ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

37

Pipeline Parallelism!
POST (EV(1, 2))
DOACROSS I = 2, N-1

 DO J = 2, N-1
 WAIT (EV(I-1, J))
 A(I, J) = .25 * (A(I-1, J) + A(I, J-1) + A(I+1, J) + A(I, J+1))
 POST (EV(I, J))
 ENDDO
ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

38

Pipeline Parallelism!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

39

Pipeline Parallelism with Strip Mining!
POST (EV(1, 1))
DOACROSS I = 2, N-1
 K = 0
 DO J = 2, N-1, 2 ! CHUNK SIZE = 2
 K = K+1
 WAIT (EV(I-1,K))
 DO m = J, MIN(J+1, N-1)
 A(I, m) = .25 * (A(I-1, m) + A(I, m-1) + A(I+1, m) + A(I, m+1))
 ENDDO
 POST (EV(I, K+1))
 ENDDO
ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

40

Pipeline Parallelism!

