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Coarse-Grain Parallelism (contd)!

Chapter 6 of Allen and Kennedy 

•  Acknowledgment: Slides from previous offerings of COMP 515 
by Prof. Ken Kennedy 
— http://www.cs.rice.edu/~ken/comp515/ 



COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

3 

Chapter 6 Summary!
•  Coarse-Grained Parallelism 

— Privatization 
— Loop distribution 
— Loop alignment 
— Loop fusion  
— Loop interchange 
— Loop reversal 
— Loop skewing 
— Pipeline parallelism 
— Scheduling 
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    DO I = 1,N!

S1     T = A(I)!

S2     A(I) = B(I)!

S3     B(I) = T!

    ENDDO!

    PARALLEL DO I = 1,N!

      PRIVATE t!

S1    t = A(I)!

S2    A(I) = B(I)!

S3    B(I) = t!

    ENDDO     !

Scalar Privatization!
•  The analog of scalar expansion is privatization. 
•  Temporaries can be given separate namespaces for each 

iteration. 
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We need to privatize array 
variables. 

For iteration J, upwards exposed 
variables are those exposed due to 
loop body without variables defined 
earlier. 

    DO I = 1,100!

S0     T(1)=X!

L1     DO J = 2,N!

S1       T(J) = T(J-1)+B(I,J) !

S2       A(I,J) = T(J)!

       ENDDO!

    ENDDO!

  
up(L1) = ({T (J −1)} \ {T(n) : 2 ≤ n ≤ j})

J= 2

NU

So for this fragment, T(1) is the only exposed variable. 

Array Privatization!
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    PARALLEL DO I = 1,100!
      PRIVATE t(N)!

S0    t(1) = X!

L1    DO J = 2,N!

S1       t(J) = t(J-1)+B(I,J)!

S2       A(I,J)=t(J)!

      ENDDO!

   ENDDO!

Array Privatization!
•  Using this analysis, we get the following code: 
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Loop Distribution!
•  Loop distribution can convert loop-carried dependences to loop-

independent dependences. 
•  Consequently, it often creates opportunity for outer-loop 

parallelism. 
•  However, we must add extra barriers to keep distributed loops 

from executing out of order, so the overhead may override the 
parallel savings. 
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DO I = 2,N!

   A(I) = B(I)+C(I)!

   D(I) = A(I-1)*2.0!

ENDDO!

DO I = 1,N   ! Aligned loop!

   IF (I .GT. 1) A(I) = B(I)+C(I)!

   IF (I .LT. N) D(I+1) = A(I)*2.0!

ENDDO!

Loop Alignment!
•  Many carried dependencies are due to array alignment issues. 
•  If we can align all references, then dependencies would go 

away, and parallelism is possible. 
•  This is also related to Software Pipelining 

D(2) = A(1)*2.0!

DO I = 2,N-1   ! Pipelined loop!

   A(I) = B(I)+C(I)!

   D(I+1) = A(I)*2.0!

ENDDO!

A(N) = B(N)+C(N)!
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DO I = 2,N!

  J = MOD(I+N-4,N-1)+2!

  A(J) = B(J)+C!

  D(I)=A(I-1)*2.0!

ENDDO !

D(2) = A(1)*2.0!
DO I = 2,N-1!
  A(I) = B(I)+C(I)!
  D(I+1) = A(I)*2.0!
ENDDO!
A(N) = B(N)+C(N)!

Alignment!
•  There are other ways to align the loop: 
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DO I = 1,N!

   A(I+1) = B(I)+C!

   X(I) = A(I+1)+A(I)!

ENDDO!

DO I = 1,N!
   A(I+1) = B(I)+C!
   ! Replicated Statement!
   IF (I .EQ 1) THEN!
      t = A(I)!
   ELSE!
      t = B(I-1)+C!
   END IF!
   X(I) = A(I+1)+t!
ENDDO!

Code Replication!
•  If an array is involved in a recurrence, then alignment isn’t 

possible. 
•  If two dependencies between the same statements have 

different dependency distances, then alignment doesn’t work.  
•  We can fix the second case by replicating code: 



COMP 515, Fall 2013 (K. Palem, V.Sarkar)	

11 1
1 

Strip Mining!
•  Converts available parallelism into a form more suitable for the 

hardware (assume THRESHOLD = minimum iters for parallel loop) 
   DO I = 1, N 
       A(I) = A(I) + B(I) 
   ENDDO 

    ==> 
   k = MAX(THRESHOLD, CEIL (N / P)) 
   PARALLEL DO I = 1, N, k 

     DO i = I, MIN(I + k-1, N) 
             A(i) = A(i) + B(i) 
    ENDDO 
   END PARALLEL DO 

11 
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Loop Fusion!
•  Loop distribution was a method for separating parallel parts of 

a loop. 
•  Our solution attempted to find the maximal loop distribution. 
•  The maximal distribution often finds parallelizable components 

too small for efficient parallelism. 
•   Two obvious solutions: 

—  Strip mine large loops to create larger granularity. 
—  Perform maximal distribution, and then fuse together parallelizable 

loops. 
— Both solutions can be combined as well. 
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Definition: A loop-independent dependence between statements S1 and 
S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and 
L2 causes the dependence to be carried by the combined loop in the 
opposite direction. 

    DO I = 1,N!

S1 !A(I) = B(I)+C!

    ENDDO!

    DO I = 1,N!

S2 !D(I) = A(I+1)+E!

    ENDDO!

    DO I = 1,N!

S1 !A(I) = B(I)+C!

S2 !D(I) = A(I+1)+E!

    ENDDO!

Fusion Safety: Fusion-Preventing  
Loop-Independent Dependences!
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L1

L2 L3

Fusing L1 with L3 violates the 
ordering constraint.  {L1,L3} 
must occur both before and 
after the node L2.   

Fusion Safety: Ordering Constraint!
•  We shouldn’t fuse loops if the fusing will violate ordering of 

the dependence graph. 
•  Ordering Constraint:  Two loops can’t be validly fused if there 

exists a path of loop-independent dependencies between them 
containing a loop or statement not being fused with them i.e., 
if fusion will result in a cycle in the resulting loop-independent 
dependences 
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Parallel loops should generally 
not be merged with sequential 
loops. 

Definition: An edge between two 
statements in loops L1 and L2 
respectively is said to be 
parallelism-inhibiting if after 
merging L1 and L2, the 
dependence is carried by the 
combined loop. 

    DO I = 1,N!

S1  !A(I+1) = B(I) + C!

    ENDDO!

    DO I = 1,N!

S2 !D(I) = A(I) + E!

    ENDDO!

    DO I = 1,N!

S1 !A(I+1) = B(I) + C!

S2 !D(I) = A(I) + E!

    ENDDO!

Fusion Profitability!
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Typed Fusion!
•  We start by classifying loops into two types: parallel and 

sequential. 
•  We next gather together all edges that inhibit efficient fusion, 

(i.e., that connect a sequential and a parallel loops) and call 
them bad edges. 

•  Given a graph of loop-independent dependences (V,E), we want 
to obtain a graph (V’,E’) by merging vertices of V subject to 
the following constraints: 

—  Bad Edge Constraint: vertices joined by a bad edge aren’t fused. 
—  Ordering Constraint: vertices joined by path containing non-

parallel vertex aren’t fused 
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After fusing parallel loops	

 After fusing sequential loops	



Typed Fusion Example!
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Thus far …!
•  Single loop methods 

— Privatization 
— Loop distribution 
— Alignment 
— Code replication 
— Loop fusion 

•  Next, methods for perfect and imperfect loops 
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Loop Interchange!
•  Parallelization: move dependence-free loops to outermost level 
•  Theorem 6.3 

— In a perfect nest of loops, a particular loop can be parallelized at 
the outermost level if and only if the column of the direction 
matrix for that nest contains only ‘=‘ entries 
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Motivation for Loop Interchange!
  DO I = 1, N 

      DO J = 1, N 
        A(I+1, J) = A(I, J) + B(I, J) 
      ENDDO 

  ENDDO 

•  Parallelizing the J loop is OK for vectorization 
•  But inefficient for parallelization (N barriers) 

(<, =) 
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Loop Interchange!
  PARALLEL DO J = 1, N 

      DO I = 1, N 
        A(I+1, J) = A(I, J) + B(I, J) 
      ENDDO 

  END PARALLEL DO 

(=, <) 
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while L is not empty 
   while there exist columns in M with all “=“ 
      success := true; 
      l:= loop with all “=“ column; 
      remove l from L; 
      parallelize l at outer level; 
      eliminate l’s column from M; 
   end; 
   if L is not empty 
      select_loop_and_interchange(L); 
      l:= outermost loop; remove l from L; sequentialize l; 
      remove column corresponding to l from M; 
      remove all rows corresponding to dependences carried by l from M; 

Loop Interchange!

22 
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= < < 
< = > 
< = < 

Loop Selection!
DO I = 2, N+1 
     DO J = 2, M+1 
          DO K = 1, L 
               A(I, J, K+1) = A(I, J-1, K) + A(I-1, J, K+2) + A(I-1, J, K) 
          ENDDO 
      ENDDO 
ENDDO 

I J K 
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Loop Selection!
DO I = 2, N+1 

  
           
                
           
       
ENDDO 

 
 
          PARALLEL DO K = 1, L 
               A(I, J, K+1) = A(I, J-1, K) + A(I-1, J, K+2) + A(I-1, J, K) 

          ENDDO 

 
 DO J = 2, M+1 

 
                

           
     ENDDO 

= < < 
< = > 
< = < 

< < 

I J K 

J K 
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<  <  =  = 
<  =  <  = 
<  =  =  < 
=  <  =  = 
=  =  <  = 
=  =  =  < 

Loop Selection!
•  Is it possible to derive a selection heuristic that provides 

optimal code? 
— NP-complete problem 

•  Assume simple approach of selecting the loop with the most ‘<‘ 
directions to eliminate the max number of rows from the 
direction matrix 

— Applying to this matrix will fail 

I  J  K  L 
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Loop Selection!
•  Favor the selection of loops that must be sequentialized before 

parallelism can be uncovered 
•  If there exists a loop that can legally be moved to the 

outermost position and there is a dependence for which that 
loop has the only ‘<‘ direction, sequentialize that loop 

•  All such loops will need to be sequentialized at some point in 
the process 

<  =  =  < 
=  <  =  < 
=  =  <  < 
<  =  =  = 
=  <  =  = 
=  =  <  = 

J  K  L  I 
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•  Example of principles involved in heuristic loop selection     
            
                
                              
            
        

    

    
       DO I = 2, N 
            
                 
                              
            
       ENDDO 

    

    
        
           PARALLEL DO K = 2, L 
               A(I, J, K) = A(I, J-1, K) + A(I-1, J, K-1) +  
                             A(I, J+1, K+1) + A(I-1, J, K+1) 
           ENDDO 
        

    

Loop Selection!

   DO J = 2, M 
        
            
                
                              
              ENDDO 

= < = 
< = < 
= < < 
< = > 

I J K 
< = = 
= < < 
< = < 
= < > 

J I K 

< < 
< > 

I K 
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= < > 
< = > 

Loop Reversal!
DO I = 2, N+1 
     DO J = 2, M+1 
          DO K = 1, L 
               A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1) 
          ENDDO 
     ENDDO 
ENDDO 

I J K 
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= < > 
< = > 

Loop Reversal!
DO I = 2, N+1 
     DO J = 2, M+1 
          DO K = L, 1, -1 
               A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1) 
          ENDDO 
     ENDDO 
ENDDO 

= < < 
< = < 

I J K I J K 
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After Loop Reversal & Interchange!
   DO K = L, 1, -1 

        PARALLEL DO I = 2, N+1 
             PARALLEL DO J = 2, M+1 
                  A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1) 
             END PARALLEL DO 
        END PARALLEL DO 

   ENDDO 

•  Increase the range of options available for loop selection 
heuristics 

< = < 
< < = 

K I J 

30 
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= < = 
< = = 
= = < 
= = = 

Loop Skewing!
DO I = 2, N+1 
     DO J = 2, M+1 
          DO K = 1, L 
               A(I, J, K) = A(I, J-1, K) + A(I-1, J, K) 
               B(I, J, K+1) = B(I, J, K) + A(I, J, K) 
          ENDDO 
      ENDDO 
ENDDO 

I J K 
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= < < 
< = < 
= = < 
= = = 

Loop Skewing!
•  Skewed using k = K + I + J yield: 

   DO I = 2, N+1 
        DO J = 2, M+1 
             DO k = I+J+1, I+J+L 
                  A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, 

J, k-I-J) 
                  B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, 

k-I-J) 
             ENDDO 
        ENDDO 

   ENDDO 
I J k 
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Loop Skewing!

DO k = 5, N+M+1 
     PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2) 
          PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1) 
               A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J) 
               B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J) 
          ENDDO 
     ENDDO 
ENDDO 

< = < 
< < = 
< = = 
= = = 

k I J 
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Loop Skewing!
•  Transforms skewed loop into one that can be interchanged to 

the outermost position without changing the meaning of the 
program 

•  Can be used to transform the skewed loop in such a way that, 
after outward interchange, it will carry all dependences 
formerly carried by the loop with respect to which it is skewed 

< = < 
< < = 
< = = 
= = = 

k I J 
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Loop Skewing!
•  Selection Heuristics 

1.  Parallelize as many loops as possible 
2.  Sequentialize at most one loop to find parallelism in the current 

outermost loop 
3.  If 1 and 2 fails, try skewing 
4.  If 3 fails, sequentialize the loop that can be moved to the 

outermost position and cover the most other loops 
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Pipeline Parallelism!
•  Fortran command DOACROSS 
•  Useful where parallelization is not available 
•  High synchronization costs on old multiprocessors 

— Cheaper on-chip synchronization on multicore 

DO I = 2, N-1 
    DO J = 2, N-1 
        A(I, J) = .25 * (A(I-1, J) + A(I, J-1) + A(I+1, J) + A(I, J+1)) 
    ENDDO 
ENDDO 
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Pipeline Parallelism!
POST (EV(1, 2)) 
DOACROSS I = 2, N-1 

 DO J = 2, N-1 
        WAIT (EV(I-1, J)) 
        A(I, J) = .25 * (A(I-1, J) + A(I, J-1) + A(I+1, J) + A(I, J+1)) 
        POST (EV(I, J)) 
    ENDDO 
ENDDO 
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Pipeline Parallelism!
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Pipeline Parallelism with Strip Mining!
POST (EV(1, 1)) 
DOACROSS I = 2, N-1 
    K = 0 
    DO J = 2, N-1, 2   ! CHUNK SIZE = 2 
        K = K+1 
        WAIT (EV(I-1,K)) 
        DO m = J, MIN(J+1, N-1) 
            A(I, m) = .25 * (A(I-1, m) + A(I, m-1) + A(I+1, m) + A(I, m+1)) 
        ENDDO 
        POST (EV(I, K+1)) 
    ENDDO 
ENDDO 
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Pipeline Parallelism!


