
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 21 15 November, 2011

1

Acknowledgments

• “A Loop Transformation Theory and an Algorithm to
Maximize Parallelism” Michael E. Wolf and Monica S.
Lam, IEEE TPDS, October 1991

• Slides on Unimodular transformations from “Loop
Transformations” lecture
— www.es.ele.tue.nl/~heco/courses/pam/loop-trafos.ppt

2

Announcements / Questions
• The next lecture will be on Polyhedral Transformations, and will

be given by Dr. Louis-Noel Pouchet from Ohio State University.
It will held in DH 3076 during 9:30am - 11:45am on Friday,
Nov 18th.
—There will be no lecture on Thursday, Nov 17th

• We only have 3 lectures remaining (Nov 22, Nov 29, Dec 1)
—Suggestions welcome on which topics you’d like to focus on
—Candidates include

– Instruction Scheduling (Chapter 10)
– Interprocedural Analysis and Optimization (Chapter 11)
– Compiling Array Assignments (Chapter 13)
– Array data flow analysis and Array SSA form

—How much of Chapters 10 and 11 are already covered in COMP
512?

3

Transformation Frameworks
• Goal: develop a unified transformation framework in which legality testing

and code generation for different transformations can be unified
—Textbook approach: catalog of transformations

– Pro: Generality
– Con: each transformation needs special-case handling

—Today’s lecture: unimodular transformations
– Pro: unimodular matrix is a simple composable representation
– Con: limited to transformations of perfect loop nests

—Friday’s lecture: polyhedral transformations
– Pro: more general than unimodular transformations (includes many

cases of loop distribution and fusion)
– Con: limited to transformation of “static control parts” (SCoP’s)

—PLDI 92: General Framework for Iter-Reordering Transformations
– Pro: more general than unimodular and some cases of polyhedral
– Con: limited to transformations of perfect loop nests

4

5

Unimodular Matrices
• A unimodular matrix T is a matrix with integer entries and

determinant ±1.

• This means that such a matrix maps an object onto another
object with exactly the same number of integer points in it.

• Its inverse T¹ always exist and is unimodular as well.

Unimodular Transformation

• A unimodular matrix is a square integer matrix that
has unit determinant

• A unimodular matrix can be used to specify a
unimodular transformation (UT) of a perfect loop
nest with affine (trapezoidal) loop bounds

• Any two UTs can be composed to form a new UT by
multiplying their unimodular matrices

• The new loop execution order is determined by the
transformed index.

Old loop
index

New loop
index Unimodular matrix

6

i’ = U x i

7

Types of Unimodular Transformations

• Loop interchange

• Loop reversal

• Loop skewing with an arbitrary skew factor

• Since unimodular transformations are closed under
multiplication, any combination is a unimodular transformation
again.

Specifying Loop Interchange as a
Unimodular Transformation

Original loop nest
for (i1 = ...)

for (i2 = ...) { BODY(i1,i2) }

Transformed loop nest
for (i1’ = ...)

for (i2’ = ...) {
 i1 = i2’; i2 = i1’; BODY(i1,i2) }

[i1‘ 0 1 i1
 =
i2‘ 1 0 i2]

[]

[]

[i1 0 1 i1’
 =
i2 1 0 i2’]

[]

[]

8

Specifying Loop Reversal as a
Unimodular Transformation

Original loop nest
for (i1 = ...)

for (i2 = ...) { BODY(i1,i2) }

Transformed loop nest
for (i1’ = ...)

for (i2’ = ...) {
 i1 = -i1’; i2 = i2’; BODY(i1,i2) }

[i1‘ -1 0 i1
 =
i2‘ 0 1 i2]

[]

[]

[i1 -1 0 i1’
 =
i2 0 1 i2’]

[]

[]

9

Specifying Loop Skewing as a
Unimodular Transformation

Original loop nest
for (i1 = ...)

for (i2 = ...) { BODY(i1,i2) }

Transformed loop nest
for (i1’ = ...)

for (i2’ = ...) {
 i1 = i1’; i2 = -i1’ + i2’; BODY(i1,i2) }

[i1‘ 1 0 i1
 =
i2‘ 1 1 i2]

[]

[]

[i1 1 0 i1’
 =
i2 -1 1 i2’]

[]

[]

10

Loop Skewing (Recap from Lecture 10)
DO I = 1, N ! Original DV = { (<,=), (=, <) }

! DO J = 1, N

S:!! A(I,J) = A(I-1,J) + A(I,J-1)

! ENDDO

ENDDO

After skewing ...

DO I’ = 1, N ! Transformed DV = { (<,<), (=, <) }

! DO J’ = I’+1, I’+N

 !! I = I’ ; J = J’ - I’ ;

S:!! A(I,J) = A(I-1,J) + A(I,J-1) ! Loop body is unchanged

! ENDDO

ENDDO

Loop interchange to ...

DO J’ = 2, N+N ! Transformed DV = { (<,<), (<, =) }

! DO I’ = max(1,J’-N), min(N,J’-1)

S:!! A(I,J) = A(I-1,J) + A(I,J-1) ! Loop body is unchanged

! ENDDO

ENDDO

11

Data Dependence Legality Test for
Unimodular Transformations

• Given an input distance vector d, the transformed
distance vector can be computed as the matrix
vector product, d’ = T x d, where T is the matrix
for the unimodular transformation

• Extend to direction vectors by treating direction
entries as ranges of integers

• Check if transformed set of dependence vectors
contains a lexicographically negative entry
—If so, transformation T is illegal

12

Applying Unimodular Data Dependence
Test for Loop Interchange

13

14

Iteration Space Mapping
• A loop nest is represented as BI ≤ b for iteration vector I

• Example:

 for(i=0; i<10;i++) -1 0 0

 for(j=i; j<10;j++) 1 0 i 9

 1 -1 j 0

 0 1 9

• Why does the loop bound matrix have 2N rows and N columns
for a nest with N loops?

≤

Iteration Space Mapping (contd)
• How to generate new loop bounds after performing a unimodular

transformation T?

• Original loop bounds, B x I ≤ b for iteration vector I

• Transformed iteration vector, I’ = T x I

• Transformed loop bounds, B x inverse(T) x I’ ≤ b for iteration
vector I

• Use inequalities to collect loop bounds
—In general, insert max functions for lower bounds and min functions

for upper bounds

15

Some fundamental results for
Unimodular Transformations (contd)

• “A Loop Transformation Theory and an Algorithm to Maximize
Parallelism”, Michael E. Wolf and Monica S. Lam, IEEE TPDS,
October 1991

• Example: distance vectors {(0,1), (1,-2), (1,-1)} can be
transformed to {(0,1), (1,0), (1,1)} by applying the following
unimodular transformation:

 1 0
 2 1

• Above result can be extended to direction vectors in some cases

16

Some fundamental results for
Unimodular Transformations (contd)

17

Proof of Theorem 6.2

18

Non-perfectly nested loops

• Unimodular transformations have multiple constraints:
1. They only transform perfectly nested loops
2. They only reorder iterations, not statement (e.g.,
they do not support loop distribution and fusion)

3. They require loop bounds to be trapezoidal

• Polyhedral frameworks address constraints 1 and 2

• Note: a non-perfectly nested loop can be converted
to a perfect loop nest using statement guards
—Pro: enables application of iteration-reordering
loop transformations

—Con: guard evaluation introduces extra overhead
19

Example of converting a non-perfectly
nested loop to a perfectly nested loop

Non-perfectly nested loop:

DO I1 = 1,3

 A(I1) = A(I1-1)

 DO I2 = 1,4

 B(I1,I2) = B(I1-1,I2)+B(I1,I2-1)

 ENDDO

ENDDO

Perfectly nested loop:

DO I1 = 1,3

 DO I2 = 1,4

 DO I3 = 0,1

 IF (I2.EQ.1.AND.I3.EQ.0) A(I1) = A(I1-1)

 ELSE IF(I3.EQ.1) B(I1,I2)=B(I1-1,I2)+B(I1,I2-1)

 ENDDO

 ENDDO

ENDDO

20

COMP 515, Fall 2011 (V.Sarkar)

REMINDER: Homework #6 (Written
Assignment)

Read Section 6 (Memory Cost Analysis) of the following paper discussed in today’s
lecture, especially the partial derivative analysis on pg 15 (printed page 247):

•Automatic Selection of High Order Transformations in the IBM XL Fortran Compilers. Vivek Sarkar. IBM Journal of
Research and Development, 41(3), May 1997

1. Compute the memory cost function and partial derivatives for loops I and J in
the following loop nest at the start of Section 9.3.5 of the course textbook.
Which loops carry locality? Can all of them be moved to the innermost position?

DO I = 1, N
 DO J = 1, M
 A(J+1) = (A(J)+A(J+1))/2
 ENDDO
ENDDO

2.Compute the memory cost and partial derivatives for loops I and J in the following
transformed loop nest (after skewing) in Section 9.3.5 of the course textbook.
Which loops carry locality? Can all of them be moved to the innermost position?

DO I = 1, N
 DO j = I, M + I - 1
 A(j-I+2) = (A(j-I+1)+A(j-I+2))/2
 ENDDO
ENDDO

21

COMP 515, Fall 2011 (V.Sarkar)

Homework #6 (contd)
• You can make the following simplifying assumptions

—Only calculate memory cost for a single level of cache, and ignore
the TLB

—Assume a cache line size of L = 32B, and an array element size of
8B (real*8)

• Homework due by 5pm on Tuesday, November 15th

• Homework should be turned into Amanda Nokleby, Duncan Hall 3137

• Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper attribution.

22

