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Acknowledgments

• “A Loop Transformation Theory and an Algorithm to 
Maximize Parallelism” Michael E. Wolf and Monica S. 
Lam, IEEE TPDS, October 1991

• Slides on Unimodular transformations from “Loop 
Transformations” lecture
— www.es.ele.tue.nl/~heco/courses/pam/loop-trafos.ppt
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Announcements / Questions
• The next lecture will be on Polyhedral Transformations, and will 

be given by Dr. Louis-Noel Pouchet from Ohio State University.  
It will held in DH 3076 during 9:30am - 11:45am on Friday, 
Nov 18th.
—There will be no lecture on Thursday, Nov 17th

• We only have 3 lectures remaining (Nov 22, Nov 29, Dec 1)
—Suggestions welcome on which topics you’d like to focus on
—Candidates include

– Instruction Scheduling (Chapter 10) 
– Interprocedural Analysis and Optimization (Chapter 11)
– Compiling Array Assignments (Chapter 13) 
– Array data flow analysis and Array SSA form

—How much of Chapters 10 and 11 are already covered in COMP 
512?
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Transformation Frameworks
• Goal: develop a unified transformation framework in which legality testing 

and code generation for different transformations can be unified
—Textbook approach: catalog of transformations

– Pro: Generality
– Con: each transformation needs special-case handling

—Today’s lecture: unimodular transformations
– Pro: unimodular matrix is a simple composable representation 
– Con: limited to transformations of perfect loop nests

—Friday’s lecture: polyhedral transformations
– Pro: more general than unimodular transformations (includes many 

cases of loop distribution and fusion)
– Con: limited to transformation of “static control parts” (SCoP’s)

—PLDI 92: General Framework for Iter-Reordering Transformations 
– Pro: more general than unimodular and some cases of polyhedral
– Con: limited to transformations of perfect loop nests

4



5

Unimodular Matrices
• A unimodular matrix T is a matrix with integer entries and 

determinant ±1.

• This means that such a matrix maps an object onto another 
object with exactly the same number of integer points in it.

• Its inverse T¹ always exist and is unimodular as well.



Unimodular Transformation  

• A unimodular matrix is a square integer matrix that 
has unit determinant

• A unimodular matrix can be used to specify a 
unimodular transformation (UT) of a perfect loop 
nest with affine (trapezoidal) loop bounds

• Any two UTs can be composed to form a new UT by 
multiplying their unimodular matrices

• The new loop execution order is determined by the 
transformed index.

Old loop 
index

New loop 
index Unimodular matrix
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Types of Unimodular Transformations

• Loop interchange

• Loop reversal

• Loop skewing with an arbitrary skew factor

• Since unimodular transformations are closed under 
multiplication, any combination is a unimodular transformation 
again.



Specifying Loop Interchange as a 
Unimodular Transformation

Original loop nest
for (i1 = ...)

for (i2 = ...) { BODY(i1,i2) }

Transformed loop nest
for (i1’ = ...)

for (i2’ = ...) {
    i1 = i2’; i2 = i1’; BODY(i1,i2) }

[i1‘            0     1        i1
         =
i2‘            1     0        i2]
 
[ ]

 
[ ]
 

[i1            0      1        i1’
         =
i2            1      0       i2’]
 
[ ]

 
[ ]
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Specifying Loop Reversal as a 
Unimodular Transformation

Original loop nest
for (i1 = ...)

for (i2 = ...) { BODY(i1,i2) }

Transformed loop nest
for (i1’ = ...)

for (i2’ = ...) {
    i1 = -i1’; i2 = i2’; BODY(i1,i2) }

[i1‘            -1    0        i1
         =
i2‘            0      1       i2]
 
[ ]

 
[ ]
 

[i1            -1    0        i1’
         =
i2            0      1       i2’]
 
[ ]

 
[ ]
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Specifying Loop Skewing as a 
Unimodular Transformation

Original loop nest
for (i1 = ...)

for (i2 = ...) { BODY(i1,i2) }

Transformed loop nest
for (i1’ = ...)

for (i2’ = ...) {
    i1 = i1’; i2 = -i1’ + i2’; BODY(i1,i2) }

[i1‘            1     0        i1
         =
i2‘            1      1       i2]
 
[ ]

 
[ ]
 

[i1            1      0       i1’
         =     
i2            -1     1       i2’]
 
[ ]

 
[ ]
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Loop Skewing (Recap from Lecture 10)
DO I = 1, N  ! Original DV = { (<,=), (=, <) }

! DO J = 1, N 

S:!! A(I,J) = A(I-1,J) + A(I,J-1)

! ENDDO

ENDDO

After skewing ...

DO I’ = 1, N  ! Transformed DV = { (<,<), (=, <) }

! DO J’ = I’+1, I’+N

 !! I = I’ ; J = J’ - I’ ; 

S:!! A(I,J) = A(I-1,J) + A(I,J-1)  ! Loop body is unchanged

! ENDDO

ENDDO

Loop interchange to ...

DO J’ = 2, N+N ! Transformed DV = { (<,<), (<, =) }

! DO I’ = max(1,J’-N), min(N,J’-1) 

S:!! A(I,J) = A(I-1,J) + A(I,J-1)  ! Loop body is unchanged

! ENDDO

ENDDO
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Data Dependence Legality Test for 
Unimodular Transformations

• Given an input distance vector d, the transformed 
distance vector can be computed as the matrix 
vector product, d’ = T x d, where T is the matrix 
for the unimodular transformation

• Extend to direction vectors by treating direction 
entries as ranges of integers

• Check if transformed set of dependence vectors 
contains a lexicographically negative entry
—If so, transformation T is illegal
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Applying Unimodular Data Dependence 
Test for Loop Interchange
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Iteration Space Mapping
• A loop nest is represented as BI ≤ b for iteration vector I

• Example: 

   for(i=0; i<10;i++)             -1  0             0

       for(j=i; j<10;j++)            1  0     i         9

                                            1 -1      j        0

                                            0  1             9

• Why does the loop bound matrix have 2N rows and N columns 
for a nest with N loops?

  

≤



Iteration Space Mapping (contd)
• How to generate new loop bounds after performing a unimodular 

transformation T?

• Original loop bounds, B x I ≤ b for iteration vector I

• Transformed iteration vector,  I’ = T x I

• Transformed loop bounds, B x inverse(T) x I’ ≤ b for iteration 
vector I

•  Use inequalities to collect loop bounds
—In general, insert max functions for lower bounds and min functions 

for upper bounds
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Some fundamental results for 
Unimodular Transformations (contd)

• “A Loop Transformation Theory and an Algorithm to Maximize 
Parallelism”, Michael E. Wolf and Monica S. Lam, IEEE TPDS, 
October 1991

• Example: distance vectors {(0,1), (1,-2), (1,-1)} can be 
transformed to {(0,1), (1,0), (1,1)} by applying the following 
unimodular transformation:

 1   0
 2   1

• Above result can be extended to direction vectors in some cases
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Some fundamental results for 
Unimodular Transformations (contd)
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Proof of Theorem 6.2
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Non-perfectly nested loops

• Unimodular transformations have multiple constraints:
1. They only transform perfectly nested loops
2. They only reorder iterations, not statement (e.g., 
they do not support loop distribution and fusion)

3. They require loop bounds to be trapezoidal

• Polyhedral frameworks address constraints 1 and 2

• Note: a non-perfectly nested loop can be converted 
to a perfect loop nest using statement guards
—Pro: enables application of iteration-reordering 
loop transformations

—Con: guard evaluation introduces extra overhead
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Example of converting a non-perfectly 
nested loop to a perfectly nested loop

Non-perfectly nested loop:

DO I1 = 1,3

 A(I1) = A(I1-1)

 DO I2 = 1,4

   B(I1,I2) = B(I1-1,I2)+B(I1,I2-1)

 ENDDO

ENDDO 

Perfectly nested loop:

DO I1 = 1,3

 DO I2 = 1,4

   DO I3 = 0,1

     IF (I2.EQ.1.AND.I3.EQ.0) A(I1) = A(I1-1)

     ELSE IF(I3.EQ.1) B(I1,I2)=B(I1-1,I2)+B(I1,I2-1)

   ENDDO

 ENDDO

ENDDO
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COMP 515, Fall 2011 (V.Sarkar)

REMINDER: Homework #6 (Written 
Assignment)

Read Section 6 (Memory Cost Analysis) of the following paper discussed in today’s 
lecture, especially the partial derivative analysis on pg 15 (printed page 247): 

•Automatic Selection of High Order Transformations in the IBM XL Fortran Compilers.  Vivek Sarkar. IBM Journal of 
Research and Development, 41(3), May 1997

1. Compute the memory cost function and partial derivatives for loops I and J in 
the following loop nest at the start of Section 9.3.5 of the course textbook.  
Which loops carry locality?  Can all of them be moved to the innermost position?

DO I = 1, N
    DO J = 1, M
        A(J+1) = (A(J)+A(J+1))/2
    ENDDO
ENDDO

2.Compute the memory cost and partial derivatives for loops I and J in the following 
transformed loop nest (after skewing) in Section 9.3.5 of the course textbook.  
Which loops carry locality?  Can all of them be moved to the innermost position?

DO I = 1, N
    DO j = I, M + I - 1
        A(j-I+2) = (A(j-I+1)+A(j-I+2))/2
    ENDDO
ENDDO
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COMP 515, Fall 2011 (V.Sarkar)

Homework #6 (contd)
• You can make the following simplifying assumptions

—Only calculate memory cost for a single level of cache, and ignore 
the TLB

—Assume a cache line size of L = 32B, and an array element size of 
8B (real*8)

• Homework due by 5pm on Tuesday, November 15th 

• Homework should be turned into Amanda Nokleby, Duncan Hall 3137

• Honor Code Policy: All submitted homeworks are expected to be the 
result of your individual effort. You are free to discuss course 
material and approaches to problems with your other classmates, 
the teaching assistants and the professor, but you should never 
misrepresent someone else’s work as your own. If you use any 
material from external sources, you must provide proper attribution. 
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