The Polyhedral Compilation Framework

Louis-Noël Pouchet

Dept. of Computer Science and Engineering
Ohio State University
pouchet@cse.ohio-state.edu

November 18, 2011

Overview of Today's Lecture

Topic: automatic optimization of applications

What this lecture is about:

- The main ideas behind polyhedral high-level loop transformations
- A (partial) review of the state-of-the-art in polyhedral compilation
- Optimization algorithms
- Available software

And what is is NOT about:

- In-depth compilation algorithms
- Low-level optimizations (e.g., machine-specific code)

Compilers

Compilers translate a human-readable program into machine code

- Numerous input languages and paradigm (from ASM to Java)
- Abstraction: a single high-level intermediate representation for programs
- The compiler front-end translates any language to this IR
- Adding a new language requires only extending the front-end
- Make the "most" of the available hardware
- The compiler back-end translates into machine code
- Specific optimizations for each supported architecture
- Adding a new target requires only extending the back-end
- Be reusable: avoid redesign a new compiler for each new chip
- Many optimizations are useful for numerous targets (parallelization, vectorization, data cache, ...)
- The compiler middle-end maps a program to an (abstract) model of computation

Compiler Middle-end

- Responsible for transforming the program in a form suitable for a better execution
- Typical: remove dead code (DCE), mutualize common expressions computation (CSE)
- More advanced: create SIMD-friendly loops, extract task parallelism
- Experimental: algorithm recognition, equivalent program substitution, ...
- Composed of numerous passes, each responsible of a specific optimization

The Optimization Problem

Outline

(1) High-Level Transformations
(2) The Polyhedral Model
(3) Program Transformations

4 Tiling
(5) Fusion-driven Optimization

6 Polyhedral Toolbox
(7) State-of-the-art and Ongoing Research

High-Level Transformations

Running Example: matmult

Example (dgemm)

```
    /* C := alpha*A*B + beta*C */
    for (i = 0; i < ni; i++)
    for (j = 0; j < nj; j++)
S1: C[i][j] *= beta;
for (i = 0; i < ni; i++)
    for (j = 0; j < nj; j++)
        for (k = 0; k < nk; ++k)
S2: C[i][j] += alpha * A[i][k] * B[k][j];
```

- Loop transformation: permute(i,k,S2)

Execution time (in s) on this laptop, GCC 4.2, ni=nj=nk=512

version	-O 0	-O 1	-O 2	$-\mathrm{O} 3-\mathrm{vec}$
original	1.81	0.78	0.78	0.78
permute	1.52	0.35	0.35	0.20

http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Optimize-Options.html

Running Example: fdtd-2d

Example (fdtd-2d)

```
for(t = 0; t < tmax; t++) {
    for (j = 0; j < ny; j++)
            ey[0][j] = _edge_[t];
    for (i = 1; i < nx; i++)
            for (j = 0; j < ny; j++)
                ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);
    for (i = 0; i < nx; i++)
            for (j = 1; j < ny; j++)
            ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);
    for (i = 0; i < nx - 1; i++)
            for (j = 0; j < ny - 1; j++)
            hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +
                    ey[i+1][j]-ey[i][j]);
```

\}

- Loop transformation: polyhedralOpt(fdtd-2d)

Execution time (in s) on this laptop, GCC 4.2, 64×1024×1024

version	-O 0	-O 1	-O 2	$-\mathrm{O} 3-\mathrm{vec}$
original	2.59	1.62	1.54	1.54
polyhedralOpt	2.05	0.41	0.41	0.41

Loop Transformations in Production Compilers

Limitations of standard syntactic frameworks:

- Composition of transformations may be tedious
- composability rules / applicability
- Parametric loop bounds, impectly nested loops are challenging
- Look at the examples!
- Approximate dependence analysis
- Miss parallelization opportunities (among many others)
- (Very) conservative performance models

Achievements of Polyhedral Compilation

The polyhedral model:

- Model/apply seamlessly arbitrary compositions of transformations
- Automatic handling of imperfectly nested, parametric loop structures
- Any loop transformation can be modeled
- Exact dependence analysis on a class of programs
- Unleash the power of automatic parallelization
- Aggressive multi-objective program restructuring (parallelism, SIMD, cache, etc.)
- Requires computationally expensive algorithms
- Usually NP-complete / exponential complexity
- Requires careful problem statement/representation

Compilation Flow

Affine transformation framework:

- Data dependence analysis
- Optimization
- Code generation

The Polyhedral Model

Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools

- PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, SUIF, Omega, Loopo, ChiLL ...
\rightarrow GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools

- PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, SUIF, Omega, Loopo, ChiLL ...
\rightarrow GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
\rightarrow Build and select a program transformation

Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools

- PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, SUIF, Omega, Loopo, ChiLL ...
\rightarrow GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
\rightarrow Build and select a program transformation

3 Code generation: from model to code
\rightarrow "Apply" the transformation in the model
\rightarrow Regenerate syntactic (AST-based) code

Motivating Example [1/2]

```
Example
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
        A[i][j] = i * j;
```

Program execution:
1: $\mathrm{A}[0][0]=0 * 0 ;$
2: $\mathrm{A}[0][1]=0 * 1 ;$
3: $\mathrm{A}[0][2]=0 * 2 ;$
4: $\mathrm{A}[1][0]=1 * 0 ;$
5: $\mathrm{A}[1][1]=1 * 1 ;$
6: $\mathrm{A}[1][2]=1 * 2 ;$
7: $\mathrm{A}[2][0]=2 * 0 ;$
8: $\mathrm{A}[2][1]=2 * 1 ;$
9: $\mathrm{A}[2][2]=2 * 2 ;$

Motivating Example [2/2]

A few observations:

- Statement is executed 9 times
- There is a different values for i, j associated to these 9 instances
- There is an order on them (the execution order)

A rough analogy: polyhedral compilation is about (statically) scheduling tasks, where tasks are statement instances, or operations

Polyhedral Program Representation

- Find a compact representation (critical)
- 1 point in the set $\leftrightarrow 1$ executed instance (to allow optimization operations, such as counting points)
- Can retrieve when the instance is executed (total order on the set)
- Easy manipulation: scanning code must be re-generated
- Deal with parametric and infinite domains
- Non-unit loop strides
- Generalized affine conditionals (union of polyhedra)
- Data-dependent conditionals

Returning to the Example

```
Example
```

```
for (i = 0; i <= 2; ++i)
```

for (i = 0; i <= 2; ++i)
for (j = 0; j <= 2; ++j)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;

```
    A[i][j] = i * j;
```

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

Returning to the Example

```
Example
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
    A[i][j] = i * j;
```

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

Returning to the Example

Example

```
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
        A[i][j] = i * j;
```

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

$$
\begin{gathered}
\mathcal{D}_{R}:\left[\begin{array}{rr}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right] \cdot\binom{i}{j}+\left(\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 0 & 2 \\
0 & 1 & 0 \\
0 & -1 & 2
\end{array}\right] \cdot\left(\begin{array}{l}
i \\
j \\
1
\end{array}\right) \geq \overrightarrow{0} \\
0 \leq i \leq 2, \quad 0 \leq j \leq 2
\end{gathered}
$$

Some Useful Algorithms

All extended to parametric polyhedra:

- Compute the facets of a polytope: PolyLib [Wilde et al]
- Compute the volume of a polytope (number of points): Barvinok [Clauss/Verdoolaege]
- Scan a polytope (code generation): CLooG [Quillere/Bastoul]
- Find the lexicographic minimum: PIP [Feautrier]

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...
```

$\mathcal{D}_{S 1}=\left[\begin{array}{rrrr}\mathbf{1} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ -1 & 0 & 1 & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -1 & -1 & 1 & 2\end{array}\right] \cdot\left(\begin{array}{c}i \\ j \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \vec{x}_{S} and \vec{p}

$$
f_{s}\left(\overrightarrow{s_{2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
x_{s_{2}} \\
n \\
1
\end{array}\right)
$$

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; ++i) $\{$
. $s[i]=0$;
. for ($j=0 ; j<n ;++j)$
. . s[i] = s[i]+a[i][j]*x[j];
\}

$$
\begin{aligned}
& f_{\mathbf{a}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right) \\
& f_{\mathbf{x}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
\end{aligned}
$$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and \vec{p}
- Data dependence between S1 and S2: a subset of the Cartesian product of $\mathcal{D}_{S 1}$ and $\mathcal{D}_{S 2}$ (exact analysis)

```
for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;
}
```


Program Transformations

Scheduling Statement Instances

$$
\begin{gathered}
\text { do } i=1,2 \\
\text { do } j=1,3 \\
S(i, j)
\end{gathered}
$$

```
do i' = 1, 3
    do }\mp@subsup{j}{}{\prime}=1,
    S(i=j',j=\mp@subsup{i}{}{\prime})
```


Scheduling Statement Instances

The transtormation matix is the identity with one diagonal elementr replaced by -1 .			
j_{4}			${ }_{4}{ }^{\text {' }}$
3	(3) (6)		(5) (3) -3
2	(2) ${ }^{1}$		(4) ${ }^{1}$ (2)-2
1	(1) 1		(6) $\begin{aligned} & 1 \\ & 1\end{aligned}$
	$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & \end{array}$		
	[rr $\left.\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq 0$	$\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\binom{i}{j}$	$\left[\begin{array}{rr}-1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i^{\prime}}{i^{\prime}}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
	$\begin{aligned} & \text { (a) original polyhedron } \\ & A \vec{x}+\vec{a} \geq 0 \end{aligned}$	(b) transformation function $\vec{y}=T \vec{x}$	(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

$$
\begin{gathered}
\text { do } i=1,2 \\
\text { do } j=1,3 \\
S(i, j)
\end{gathered}
$$

```
do i' = -1, -2, -1
    do j' = 1, 3
    S(i=3-\mp@subsup{i}{}{\prime},j=\mp@subsup{j}{}{\prime})
```


Scheduling Statement Instances

The transtormation matix is the comosition of an interchange and reveressal			
j_{4}			${ }_{4}{ }^{\text {, }}$
			3
			(6) (5) (4) -2
			1. 1 , ${ }^{4}$
			(3) (2) (1) 1
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$			
	$\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq 0$	$\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\binom{i}{j}$	$\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]\binom{i^{\prime}}{i^{\prime}}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
	(a) original polyhedron $A \vec{x}+\vec{a} \geq \overrightarrow{0}$	(b) transformation function $\vec{y}=T \vec{x}$	(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

$$
\begin{gathered}
\text { do } i=1,2 \\
\text { do } j=1,3 \\
S(i, j)
\end{gathered}
$$

```
do j' = -1, -3, -1
    do i' = 1, 2
    S(i=4-j',j=\mp@subsup{i}{}{\prime})
```


Scheduling Statement Instances

The transtormation matix is the composition of an interchange anmot reversal			
j_{4}			${ }^{\text {j }}{ }^{\text {, }}$
			3
			(6) (5) (4) -2
			1. 1 , ${ }^{4}$
			(3) (2) (1) 1
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & \end{array}$			$-3-2-100120$,
	$\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq 0$	$\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\binom{i}{j}$	$\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]\binom{i^{\prime}}{i^{\prime}}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
	(a) original polyhedron $A \vec{x}+\vec{a} \geq \overrightarrow{0}$	(b) transformation function $\vec{y}=T \vec{x}$	(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

$$
\begin{gathered}
\text { do } i=1,2 \\
\text { do } j=1,3 \\
S(i, j)
\end{gathered}
$$

```
do j' = -1, -3, -1
    do i' = 1, 2
    S(i=4-j',j=\mp@subsup{i}{}{\prime})
```


Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule Θ^{R} is an affine form on the outer loop iterators \vec{x}_{S} and the global parameters \vec{n}. It is written:

$$
\Theta^{S}\left(\vec{x}_{S}\right)=\mathbf{T}_{S}\left(\begin{array}{c}
\vec{x}_{S} \\
\vec{n} \\
1
\end{array}\right), \quad \mathbf{T}_{S} \in \mathbb{K}^{p \times \operatorname{dim}\left(\vec{x}_{S}\right)+\operatorname{dim}(\vec{n})+1}
$$

- A schedule assigns a timestamp to each executed instance of a statement
- If T is a vector, then Θ is a one-dimensional schedule
- If T is a matrix, then Θ is a multidimensional schedule

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Distribute loops

- All instances of S1 are executed before the first S2 instance

Program Transformations

Distribute loops + Interchange loops for S2

- The outer-most loop for $\mathbf{S} \mathbf{2}$ becomes k

Program Transformations

Illegal schedule

- All instances of S1 are executed after the last S2 instance

Program Transformations

A legal schedule

- Delay the S2 instances
- Constraints must be expressed between $\Theta^{S 1}$ and $\Theta^{S 2}$

Program Transformations

Implicit fine-grain parallelism

```for (i = 0; i < n; ++i) for (j = 0; j < n; ++j) { S1:C[i][j] = 0; for (k = 0; k < n; ++k)```	$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ \mathbf{1}\end{array}\right)$	$\begin{aligned} & \text { for }(i=0 ; i<n ;++i) \\ & \operatorname{por}(j=0 ; j<n ;++j) \\ & \quad C[i][j]=0 ; \\ & \text { for }(k=n ; k<2 \star n ;++k) \end{aligned}$
$\begin{aligned} & \text { S2: } \quad \mathrm{C}[\mathrm{i}][j]+= \mathrm{A}[\mathrm{i}][\mathrm{k}] * \\ & \mathrm{~B}[\mathrm{k}][j] ; \end{aligned}$	$\Theta^{52} \cdot \vec{x}_{S 2}=\left(\begin{array}{lllll} 0 & 0 & 1 & 1 & 0 \end{array}\right) \cdot\left(\begin{array}{l} \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{n} \\ \mathbf{1} \end{array}\right)$	$\begin{aligned} & \text { pfor }(j=0 ; j<n ;++j) \\ & \text { pfor }(i=0 ; i<n ;++i) \\ & C[i][j]+ A[i][k-n] * \\ & B[k-n][j] ; \end{aligned}$

- Number of rows of $\Theta \leftrightarrow$ number of outer-most sequential loops


## Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lllllll}
\mathbf{i} & j & i & j & k & n & n \\
1 & 1 & 1
\end{array}\right)^{T}
\end{aligned}
$$

## Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0}
\end{array}\right) \cdot\left(\begin{array}{cccccccc}
\mathbf{i} & \mathbf{j} & \mathbf{i} & \mathbf{j} & \mathbf{k} & \mathrm{n} & \mathrm{n} & \mathbf{1} \\
\vec{l} & \mathbf{1} \\
& & & \vec{p} & \mathbf{p}
\end{array}\right)^{T}
\end{aligned}
$$

## Program Transformations

Representing a schedule

```
for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j){
S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k]*
 B[k][j];
 }
```

$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{cccc}\mathbf{1} & \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$
$\Theta^{S 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$

```
for (i = n; i < 2*n; ++i)
 for (j = 0; j < n; ++j)
 C[i][j] = 0;
for (k= n+1; k<= 2*n; ++k)
 for (j = 0; j < n; ++j)
 for (i = 0; i < n; ++i)
 C[i][j] += A[i][k-n-1]*
 B[k-n-1][j];
```

	Transformation	Description
$\vec{l} \vec{l}$	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitt ing
$c$	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

## Pictured Example



Example of 2 extended dependence graphs

## Legal Program Transformation

A few properties:

- A transformation is illegal if a dependence crosses the hyperplane backwards
- A dependence going forward between 2 hyperplanes indicates sequentiality
- No dependence between any point of the hyperplane indicates parallelism


## Definition (Precedence condition)

Given $\Theta^{R}$ a schedule for the instances of $R, \Theta^{S}$ a schedule for the instances of $S$. $\Theta^{R}$ and $\Theta^{S}$ are legal schedules if $\forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$ :

$$
\Theta_{R}\left(\vec{x}_{R}\right) \prec \Theta_{S}\left(\vec{x}_{S}\right)
$$

## A (Naive) Scheduling Approach

- Pick a schedule for the program statements
- Check if it respects all dependences

This is called filtering

Limitations:

- How to use this in combination of an objective function?
- For example, the density of legal 1-d affine schedules is low:

	matmult	locality	fir	h264	crout
$\dot{i}$-Bounds	$-1,1$	$-1,1$	0,1	$-1,1$	$-3,3$
$c$-Bounds	$-1,1$	$-1,1$	0,3	0,4	$-3,3$
\#Sched.	$1.9 \times 10^{4}$	$5.9 \times 10^{4}$	$1.2 \times 10^{7}$	$1.8 \times 10^{8}$	$2.6 \times 10^{15}$
\#Legal $\Downarrow$	6561	912	792	360	798

## Objectives for a Good Scheduling Algorithm

- Build a legal schedule, aka a legal transformation
- Embed some properties in this legal schedule
- latency: minimize the time between the first and last iteration
- parallelism (for placement)
- permutability (for tiling)
- ...

A 2-step approach:

- Find the solution set of all legal affine schedules
- Find an ILP formulation for the objective function


## Selecting a Good Schedule

Build a cost function to select a (good) schedule:

- Minimize latency: bound the execution time

Bound the program execution / find bounded delay [Feautrier]
Given $L=w_{0}+\vec{u} . \vec{w}$, compute $\min (\Theta(\vec{x})-L)$ s.t. $\Theta$ is legal

- Exhibit coarse-grain parallelism

Placement constraints [Lim/Lam]
$\Theta^{R}\left(\vec{x}_{R}\right)=\Theta^{S}\left(\vec{x}_{S}\right)$ for all instances s.t. $\Theta$ is legal

- Improve data locality (spatial/temporal reuse)
- Many more possible...


## Tiling

## An Overview of Tiling

Tiling: partition the computation into atomic blocs

- Early work in the late 80's
- Motivation: data locality improvement + parallelization



## An Overview of Tiling

- Tiling the iteration space
- It must be valid (dependence analysis required)
- It may require pre-transformation
- Unimodular transformation framework limitations
- Supported in current compilers, but limited applicability
- Challenges: imperfectly nested loops, parametric loops, pre-transformations, tile shape, ...
- Tile size selection
- Critical for locality concerns: determines the footprint
- Empirical search of the best size (problem + machine specific)
- Parametric tiling makes the generated code valid for any tile size


## Motivating Example

## Example (fdtd-2d)

```
for(t = 0; t < tmax; t++) (
 for (j = 0; j < ny; j++)
 ey[0][j] = _edge_[t];
 for (i = 1; i < nx; i++)
 for (j = 0; j < ny; j++)
 ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);
 for (i = 0; i < nx; i++)
 for (}j=1; j < ny; j++
 ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);
 for (i = 0; i < nx - 1; i++)
 for (j = 0; j < ny - 1; j++)
 hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +
 ey[i+1][j]-ey[i][j]);
```

\}

## Motivating Example

## Example (FDTD-2D tiled)

```
for (c0 = 0; c0<= (((ny + 2 * tmax + -3)* 32<0?((32<0?-((-(ny + 2 * tmax + - 3) + 32 + 1) / 32) : - ((-(ny + 2 *
tmax + -3) + 32-1) (32))): (ny + 2 * tmax + -3) / 32)); ++c0) (
 #pragma omp parallel for private(c3, c4, c2, c5)
 for (cl = (((c0* 2<0?-(-c0/2): ((2<0? (-c0 + -2 - 1)/ -2 : (c0 + 2 - 1)/ 2)))) > (((32 * c0 + -tmax + 1) *
32<0?-(-(32 * c0 + -tmax + 1)/ 32) : ((32<0? (- (32 * c0 + -tmax + 1) + - 32 - 1) / - 32 : (32 * c0 + -tmax + 1 + 32
-1)/ 32))))?((c0*2<0?-(-c0/2):((2<0?(-c0+-2-1)/-2:(c0+2-1)/2)))):(((32 * c0 + -tmax + 1) *
32<0?-(-(32* c0 + -tmax + 1) / 32) : ((32<0? (-(32* c0 + -tmax + 1) + - 32 - 1)/ - 32 : (32 * c0 + -tmax + 1 + 32
-1)/ 32))))); c1<=(((()((ny + tmax + -2) * 32<0?((32<0?-((-(ny + tmax + -2) + 32 + 1)/ 32) : - ((-(ny + tmax +
-2) + 32-1)/ 32))):(ny + tmax + -2)/ 32))< (((32 * c0 + ny + 30) * 64<0?((64<0?-((-(32 * c0 + ny + 30) + 64
+1)/64): -((-(32* c0 + ny + 30) + 64-1)/64))):(32* c0 + ny + 30)/64))?(((ny + tmax + -2) * 32< < ? ((32<
0?-((-(ny + tmax + -2) + 32 + 1)/ 32): -((-(ny + tmax + -2) + 32-1)/ 32))):(ny + tmax + -2)/ 32)):(((32 * c0
ny + 30)* 64<0?((64<0?-((-(32*c0 + ny + 30) + 64 + 1)/ 64): -((-(32 * c0 + ny + 30) + 64 - 1) / 64))): (32 *
c0 + ny + 30)/ 64)))) < c0?(((((ny + tmax + -2)* 32<0? ((32< 0?-((-(ny + tmax + -2) + 32 + 1)/ 32) : -((-(ny + tmax
+-2) + 32-1)/ 32))):(ny + tmax + -2)/ 32))< (((32 * c0 + ny + 30) * 64<0?((64<0?-((-(32 * c0 + ny + 30) + 64
+1)/64):-((-(32*c0 + ny + 30) + 64-1)/64))):(32*c0 + ny + 30)/64))?(((ny + tmax + - 2) * 32<0?((32<
0?-((-(ny + tmax + -2) + 32 + 1)/ 32): -((-(ny + tmax + -2) + 32-1)/ 32))): (ny + tmax + -2)/ 32)):(((32 * c0 +
ny + 30) * 64<0? ((64<0?-((-(32*c0 + ny + 30) + 64 + 1)/ 64): -((-(32*c0 + ny + 30) + 64 - 1)/ 64))):(32 *
c0 + ny + 30)/ 64)))) : c0)); ++c1) {
 for (c2 = c0 + -c1; c2<= (()((tmax + nx + -2) * 32< 0?((32< 0?-((-(tmax + nx + -2) + 32 +) / / 32) : - ((- (tmax +
nx + -2) + 32-1) / 32))) :(tmax + nx + -2) / 32))< (((32 * c0 + -32*cl + nx + 30) * 32< < ? ((32 < 0?-((-(32 * c0 +
-32*c1 + nx + 30)+32 + 1)/ 32): -((-(32*c0+-32*cl+nx+30) + 32-1)/32))):(32 * c0 + - 32 * cl + nx +
30)/32))?(((tmax + nx + -2)* *2<0?((32<0?-((-(tmax + nx + -2) + 32 + 1)/ 32): -((-(tmax + nx + - <) + 32 - 1) /
32))):(tmax + nx + -2)/ 32)): (((32* c0 + - 32* cl + nx + 30) * 32<0?((32<0?-((-(32 * c0 + - 32 * c1 + nx + 30)
+32+1)/32):-((-(32*c0+-32*c1+nx+30)+32-1)/ 32))):(32*c0+ -32*cl + nx + 30)/ 32)))); ++c2)
|
 if (c0 == 2 * c1 && c0 == 2 * c2) {
 for (c3 = 16* c0; c3<=((tmax + -1< 16*c0 + 30?tmax + -1 : 16*c0 + 30)); ++c3)
 if (c0 % 2 == 0)
 (ey[0])[0] = (_edge_[c3]);
 (200 more lines!)
```

Performance gain: 2-6× on modern multicore platforms

## Tiling in the Polyhedral Model

- Tiling partition the computation into blocks
- Note we consider only rectangular tiling here
- For tiling to be legal, such a partitioning must be legal




## Key Ideas of the Tiling Hyperplane Algorithm

Affine transformations for communication minimal parallelization and locality optimization of arbitrarily nested loop sequences
[Bondhugula et al, CC'08 \& PLDI'08]

- Compute a set of transformations to make loops tilable
- Try to minimize synchronizations
- Try to maximize locality (maximal fusion)
- Result is a set of permutable loops, if possible
- Strip-mining / tiling can be applied
- Tiles may be sync-free parallel or pipeline parallel
- Algorithm always terminates (possibly by splitting loops/statements)


## Example: 1D-Jacobi

## 1-D Jacobi (imperfectly nested)

for $(t=1 ; t<M ; t++)\{$
for $(i=2 ; i<N-1 ; i++)\{$
S: $\quad b[i]=0.333 *(a[i-1]+a[i]+a[i+1]) ;\}$
for $(j=2 ; j<N-1 ; j++)\{$
T: $\quad a[j]=b[j] ;\}\}$

$$
\begin{aligned}
& {\left[\begin{array}{c}
\phi_{S}^{1} \\
\phi_{S}^{2}
\end{array}\right]\left(\begin{array}{l}
t \\
i \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{c}
\phi_{T}^{1} \\
\phi_{T}^{2}
\end{array}\right]\left(\begin{array}{l}
t \\
j \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

## Example: 1D-Jacobi

## 1-D Jacobi (imperfectly nested)

$$
\begin{aligned}
& {\left[\begin{array}{l}
\phi_{S}^{1} \\
\phi_{S}^{2}
\end{array}\right]\left(\begin{array}{l}
t \\
i \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
\phi_{T}^{1} \\
\phi_{T}^{2}
\end{array}\right]\left(\begin{array}{l}
t \\
j \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

- The resulting transformation is equivalent to a constant shift of one for $T$ relative to $S$, fusion ( $j$ and $i$ are named the same as a result), and skewing the fused i loop with respect to the t loop by a factor of two.
- The $(1,0)$ hyperplane has the least communication: no dependence crosses more than one hyperplane instance along it.


## Example: 1D-Jacobi

## Transforming S



## Example: 1D-Jacobi

## Transforming $T$



## Example: 1D-Jacobi

## Interleaving S and T



## Example: 1D-Jacobi

## Interleaving S and T

$$
\begin{aligned}
& {\left[\begin{array}{l}
\phi_{S}^{1} \\
\phi_{S}^{2}
\end{array}\right]\left(\begin{array}{c}
t \\
i \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{c}
\phi_{T}^{1} \\
\phi_{T}^{2}
\end{array}\right]\left(\begin{array}{l}
t \\
j \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 1
\end{array}\right]}
\end{aligned}
$$



## Example: 1D-Jacobi

1-D Jacobi (imperfectly nested) - transformed code

```
 for (t0=0;t0<=M-1;t0++) {
s': b[2]=0.333*(a[2-1]+a[2]+a[2+1]);
 for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
S: b b -2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
 +a[-2*t0+t1+1]);
T: a[-2*t0+t1-1]=b[-2*t0+t1-1]; }
T': a[N-2]=b[N-2]; }
```



## Example: 1D-Jacobi

1-D Jacobi (imperfectly nested) - transformed code

```
 for (t0=0;t0<=M-1;t0++) {
s': b[2]=0.333*(a[2-1]+a[2]+a[2+1]);
 for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
S: b b -2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
 +a[-2*t0+t1+1]);
T
 a[-2*t0+t1-1]=b[-2*t0+t1-1]; }
T': a[N-2]=b[N-2]; }
```



## Fusion-driven Optimization

## Overview

## Problem: How to improve program execution time?

- Focus on shared-memory computation
- OpenMP parallelization
- SIMD Vectorization
- Efficient usage of the intra-node memory hierarchy
- Challenges to address:
- Different machines require different compilation strategies
- One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?

## Objectives for a Successful Optimization

During the program execution, interplay between the hardware ressources:

- Thread-centric parallelism
- SIMD-centric parallelism
- Memory layout, inc. caches, prefetch units, buses, interconnects...
$\rightarrow$ Tuning the trade-off between these is required
A loop optimizer must be able to transform the program for:
- Thread-level parallelism extraction
- Loop tiling, for data locality
- Vectorization

Our approach: form a tractable search space of possible loop transformations

## Running Example

## Original code

```
Example (tmp = A.B,D = tmp.C)
 for (i1 = 0; i1 < N; ++i1)
 for (j1 = 0; j1 < N; ++j1) {
 tmp[i1][j1] = 0;
 for (k1 = 0; k1 < N; ++k1)
 tmp[i1][j1] += A[i1][k1] * B[k1][j1];
 }
 {R,S} fused, {T,U} fused
 for (i2 = 0; i2 < N; ++i2)
 for (j2 = 0; j2 < N; ++j2) {
 D[i2][j2] = 0;
 for (k2 = 0; k2 < N; ++k2)
 D[i2][j2] += tmp[i2][k2] * C[k2][j2];
}
```

	Original	Max. fusion	Max. dist
$4 \times$ Balanced			
$4 \times$ Opteron $8380 /$ ICC 11	$1 \times$		

## Running Example

Cost model: maximal fusion, minimal synchronization [Bondhugula et al., PLDI'08]

```
Example (tmp = A.B,D = tmp.C)
```

```
 parfor (c0 = 0; c0<N; c0++) {
 for (c1 = 0; cl < N; c1++) {
 tmp[c0][c1]=0;
 D[c0][c1]=0;
 for (c6 = 0; c6 < N; c6++)
 tmp[c0][c1] += A[c0][c6] * B[c6][c1];
 parfor (c6 = 0;c6 <= c1; c6++)
 D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];
 {R,S,T,U} fused
 for (c1 = N; cl < 2*N - 1; c1++)
 parfor (c6 = c1-N+1; c6 < N; c6++)
U: D[c0][c6] += tmp[c0][1-c6] * C[c1-c6][c6];
}
```

|  | Original | Max. fusion | Max. dist |
| :--- | :---: | :---: | :---: | Balanced |  |  |  |
| :--- | :---: | :---: |
| $4 \times$ Xeon 7450 / ICC 11 | $1 \times$ | $2.4 \times$ |
|  |  |  |
| $4 \times$ Opteron 8380 / ICC 11 | $1 \times$ | $2.2 \times$ |

## Running Example

## Maximal distribution: best for Intel Xeon 7450

Poor data reuse, best vectorization

```
Example (tmp = A.B,D=tmp.C)
 parfor (il = 0; il < N; ++il)
 parfor (j1 = 0; j1< N; ++j1)
R: tmp[i1][j1] = 0;
 parfor (i1 = 0; il < N; ++i1)
 for (k1 = 0; k1 < N; ++k1)
 parfor (j1 = 0; j1 < N; ++j1)
S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
 {R} and {S} and {T} and {U} distributed
 parfor (i2 = 0; i2 < N; ++i2)
 parfor (j2 = 0; j2 < N; ++j2)
T: D[i2][j2] = 0;
 parfor (i2 = 0; i2 < N; ++i2)
 for (k2 = 0; k2 < N; ++k2)
 parfor (j2 = 0; j2<N; ++j2)
U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];
```

	Original	Max. fusion	Max. dist	Balanced
$4 \times$ Xeon 7450 / ICC 11	$1 \times$	$2.4 \times$	$3.9 \times$	
$4 \times$ Opteron $8380 /$ ICC 11	$1 \times$	$2.2 \times$	$6.1 \times$	

## Running Example

Balanced distribution/fusion: best for AMD Opteron 8380
Poor data reuse, best vectorization

```
Example (tmp = A.B,D = tmp.C)
```

```
 parfor (c1 = 0; c1 < N; c1++)
```

    parfor (c1 = 0; c1 < N; c1++)
        parfor (c2 = 0; c2 < N; c2++)
        parfor (c2 = 0; c2 < N; c2++)
            C[c1][c2] = 0;
            C[c1][c2] = 0;
    parfor (c1 = 0; c1 < N; c1++)
    parfor (c1 = 0; c1 < N; c1++)
        for (c3 = 0; c3 < N;c3++) {
        for (c3 = 0; c3 < N;c3++) {
            E[c1][c3] = 0;
            E[c1][c3] = 0;
            parfor (c2 = 0; c2 < N;c2++)
            parfor (c2 = 0; c2 < N;c2++)
                C[c1][c2] += A[c1][c3] * B[c3][c2];
                C[c1][c2] += A[c1][c3] * B[c3][c2];
            } {S,T} fused, {R} and {U} distributed
            } {S,T} fused, {R} and {U} distributed
    parfor (c1 = 0; c1 < N; cl++)
    parfor (c1 = 0; c1 < N; cl++)
        for (c3 = 0; c3 < N; c3++)
        for (c3 = 0; c3 < N; c3++)
        parfor (c2 = 0; c2 < N; c2++)
        parfor (c2 = 0; c2 < N; c2++)
    U: E[c1][c2] += C[c1][c3] * D[c3][c2];

```
U: E[c1][c2] += C[c1][c3] * D[c3][c2];
```

	Original	Max. fusion	Max. dist	Balanced
$4 \times$ Xeon 7450 / ICC 11	$1 \times$	$2.4 \times$	$3.9 \times$	$3.1 \times$
$4 \times$ Opteron $8380 /$ ICC 11	$1 \times$	$2.2 \times$	$6.1 \times$	$8.3 \times$

## Running Example

```
Example (tmp = A.B,D = tmp.C)
```

```
 parfor (c1 = 0; c1 < N; c1++)
```

    parfor (c1 = 0; c1 < N; c1++)
        parfor (c2 = 0; c2 < N; c2++)
        parfor (c2 = 0; c2 < N; c2++)
    R:
parfor (c1 = 0; c1 < N; c1++)
parfor (c1 = 0; c1 < N; c1++)
for (c3 = 0; c3 < N;c3++) {
for (c3 = 0; c3 < N;c3++) {
E[c1][c3] = 0;
E[c1][c3] = 0;
parfor (c2 = 0; c2 < N;c2++)
parfor (c2 = 0; c2 < N;c2++)
C[c1][c2] += A[c1][c3] * B[c3][c2];
C[c1][c2] += A[c1][c3] * B[c3][c2];
{S,T} fused, {R} and {U} distributed
{S,T} fused, {R} and {U} distributed
parfor (c1 = 0; c1 < N; c1++)
parfor (c1 = 0; c1 < N; c1++)
for (c3 = 0; c3 < N; c3++)
for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)
parfor (c2 = 0; c2 < N; c2++)
E[c1][c2] += C[c1][c3] * D[c3][c2];

```
 E[c1][c2] += C[c1][c3] * D[c3][c2];
```

	Original	Max. fusion	Max. dist	Balanced
$4 \times$ Xeon 7450 / ICC 11	$1 \times$	$2.4 \times$	$3.9 \times$	$3.1 \times$
$4 \times$ Opteron 8380 / ICC 11	$1 \times$	$2.2 \times$	$6.1 \times$	$8.3 \times$

The best fusion/distribution choice drives the quality of the optimization

## Loop Structures

## Possible grouping + ordering of statements

- $\{\{R\},\{S\},\{T\},\{U\}\} ;\{\{R\},\{S\},\{U\},\{T\}\} ; \ldots$

- \{\{R,S,T\}, \{U\}\}; \{\{R\}, \{S,T,U\}\}; \{\{S\}, \{R,T,U\}\};...
- \{\{R,S,T,U\}\};

Number of possibilities: >>n! (number of total preorders)

## Loop Structures

## Removing non-semantics preserving ones

- $\{\{R\},\{S\},\{T\},\{U\}\} ;\{2 R\},\{S\},\{U\},\{T\}\} ; \ldots$

- \{\{R,S,T\}, \{U\}\}; \{\{R\}, \{S,T,U\}\}; \{\{S\}, \{R,T,U\}\};,..
- \{\{R,S,T,U\}\}

Number of possibilities: 1 to 200 for our test suite

## Loop Structures

For each partitioning, many possible loop structures

- \{\{R\}, \{S\}, \{T\}, \{U\}\}
- For $\mathbf{S}:\{i, j, k\} ;\{i, k, j\} ;\{k, i, j\} ;\{k, j, i\} ; \ldots$
- However, only $\{i, k, j\}$ has:
- outer-parallel loop
- inner-parallel loop
- lowest striding access (efficient vectorization)


## Possible Loop Structures for 2mm

- 4 statements, 75 possible partitionings
- 10 loops, up to 10 ! possible loop structures for a given partitioning
- Two steps:
- Remove all partitionings which breaks the semantics: from 75 to 12
- Use static cost models to select the loop structure for a partitioning: from $d$ ! to 1
- Final search space: $\mathbf{1 2}$ possibilites


## Contributions and Overview of the Approach

- Empirical search on possible fusion/distribution schemes
- Each structure drives the success of other optimizations
- Parallelization
- Tiling
- Vectorization
- Use static cost models to compute a complex loop transformation for a specific fusion/distribution scheme
- Iteratively test the different versions, retain the best
- Best performing loop structure is found


## Search Space of Loop Structures

- Partition the set of statements into classes:
- This is deciding loop fusion / distribution
- Statements in the same class will share at least one common loop in the target code
- Classes are ordered, to reflect code motion
- Locally on each partition, apply model-driven optimizations
- Leverage the polyhedral framework:
- Build the smallest yet most expressive space of possible partitionings [Pouchet et al., POPL'11]
- Consider semantics-preserving partitionings only: orders of magnitude smaller space


## Summary of the Optimization Process

	description	\#loops	\#stmts	\#refs	\#deps	\#part.	\#valid	Variability	Pb. Size
2 mm	Linear algebra (BLAS3)	6	4	8	12	75	12	$\checkmark$	$1024 \times 1024$
3 mm	Linear algebra (BLAS3)	9	6	12	19	4683	128	$\checkmark$	$1024 \times 1024$
adi	Stencil (2D)	11	8	36	188	545835	1		$1024 \times 1024$
atax	Linear algebra (BLAS2)	4	4	10	12	75	16	$\checkmark$	$8000 \times 8000$
bicg	Linear algebra (BLAS2)	3	4	10	10	75	26	$\checkmark$	$8000 \times 8000$
correl	Correlation (PCA: StatLib)	5	6	12	14	4683	176	$\checkmark$	$500 \times 500$
covar	Covariance (PCA: StatLib)	7	7	13	26	47293	96	$\checkmark$	$500 \times 500$
doitgen	Linear algebra	5	3	7	8	13	4		$128 \times 128 \times 128$
gemm	Linear algebra (BLAS3)	3	2	6	6	3	2		$1024 \times 1024$
gemver	Linear algebra (BLAS2)	7	4	19	13	75	8	$\checkmark$	$8000 \times 8000$
gesummv	Linear algebra (BLAS2)	2	5	15	17	541	44	$\checkmark$	$8000 \times 8000$
gramschmidt	Matrix normalization	6	7	17	34	47293	1		$512 \times 512$
jacobi-2d	Stencil (2D)	5	2	8	14	3	1		20×1024×1024
lu	Matrix decomposition	4	2	7	10	3	1		$1024 \times 1024$
ludcmp	Solver	9	15	40	188	$10^{12}$	20	$\checkmark$	$1024 \times 1024$
seidel	Stencil (2D)	3	1	10	27	1	1		$20 \times 1024 \times 1024$

Table: Summary of the optimization process

## Experimental Setup

We compare three schemes:

- maxfuse: static cost model for fusion (maximal fusion)
- smartfuse: static cost model for fusion (fuse only if data reuse)
- Iterative: iterative compilation, output the best result


## Performance Results - Intel Xeon 7450 - ICC 11

Performance Improvement - Intel Xeon 7450 (24 threads)


## Performance Results - AMD Opteron 8380 - ICC 11

Performance Improvement - AMD Opteron 8380 (16 threads)


## Performance Results - Intel Atom 330-GCC 4.3

Performance Improvement - Intel Atom 230 (2 threads)


## Assessment from Experimental Results

(1) Empirical tuning required for 9 out of 16 benchmarks
(2) Strong performance improvements: $2.5 \times-3 \times$ on average
(3) Portability achieved:

- Automatically adapt to the program and target architecture
- No assumption made about the target
- Exhaustive search finds the optimal structure (1-176 variants)
(4) Substantial improvements over state-of-the-art (up to $2 \times$ )


## Conclusions

Take-home message:
$\Rightarrow$ Fusion / Distribution / Code motion highly program- and machine-specific
$\Rightarrow$ Minimum empirical tuning + polyhedral framework gives very good performance on several applications
$\Rightarrow$ Complete, end-to-end framework implemented and effectiveness demonstrated

Future work:

- Further pruning of the search space (additional static cost models)
- Statistical search techniques


## Polyhedral Toolbox

## Polyhedral Software Toolbox

- Analysis:
- Extracting the polyhedral representation of a program: Clan, PolyOpt
- Computing the dependence polyhedra: Candl
- Mathematical operations:
- Doing polyhedral operations on $\mathbb{Q}$-, $\mathbb{Z}$ - and Z-polyhedral: PolyLib, ISL
- Solving ILP/PIP problems: PIPLib
- Computing the number of points in a (parametric) polyhedron: Barvinok
- Projection on $\mathbb{Q}$-polyhedra: FM, the Fourier-Motzkin Library
- Scheduling:
- Tiling hyperplane method: PLuTo
- Iterative selection of affine schedules: LetSee
- Code generation:
- Generating C code from a polyhedral representation: CLooG
- Parametric tiling from a polyhedral representation: PrimeTile, DynTile, PTile


## Polyhedral Compilers

Available polyhedral compilers:

- Non-Free:
- IBM XL/Poly
- Reservoir Labs R-Stream
- Free:
- GCC (see the GRAPHITE effort)
- LLVM (see the Polly effort)
- PIPS/Par4All (C-to-GPU support)
- Prototypes (non exhaustive list!):
- PolyOpt from OSU, a polyhedral compiler using parts of PoCC and the Rose infrastructure
- PoCC, the POlyhedral Compiler Collection
http://pocc.sourceforge.net
Contains Clan, Candl, Pluto, LetSee, PIPLib, PolyLib, FM, ISL, Barvinok, CLooG, ...
- SUIF, Loopo, Clang+ISL, ...


## Polyhedral Methodology Toolbox

- Semantics-preserving schedules:
- Dependence relation finely characterized with dependence polyhedra
- Algorithms should harness the power of this representation (ex: legality testing, parallelism testing, etc.)
- Scheduling:
- Scheduling algorithm can be greedy (level-by-level) or global
- Beware of scalability
- Special properties can be embedded in the schedule via an ILP (ex: fusion, tiling, parallelism)
- Mathematics:
- Beware of the distinction between $\mathbb{Q}$-, $\mathbb{Z}$ - and Z-polyhedra: always choose the most relaxed one that fits the problem
- Farkas Lemma is useful to characterize a solution set
- Farkas Lemma is also useful to linearize constraints


## (Partial) State-of-the-art in Polyhedral Compilation

(...In my humble opinion)

- Analysis
- Array Dataflow Analysis [Feautrier,IJPP91]
- Dependence polyhedra [Feautrier,IJPP91] (Candl)
- Non-static control flow support [Benabderrahmane,CC10]
- Program transformations:
- Tiling hyperplane method [Bondhugula,CC08/PLDI08]
- Convex space of all affine schedules [Vasilache,07]
- Iterative search of schedules [Pouchet,CGO07/PLDI08]
- Vectorization [Trifunovic,PACT09]
- Code generation
- Arbitrary affine scheduling functions [Bastoul,PACT04]
- Scalable code generation [Vasilache,CC06/PhD07]
- Parametric Tiling [Hartono et al,ICS09/CGO10]


## Some Ongoing Research [1/2]

- Scalability: provide more scalable algorithms, operating on hundreds of statements
- Trade-off between optimality and scalability
- Redesigning the framework: introducing approximations
- Vectorization: pre- and post- transformations for vectorization
- Select the appropriate transformations for vectorization
- Generate efficient SIMD code
- Scheduling: get (very) good performance on a wide variety of machines
- Using machine learning to characterize the machine/compiler/program
- Using more complex scheduling heuristics


## Some Ongoing Research [2/2]

- GPU code generation
- Specific parallelism pattern desired
- Generate explicit communications
- Infrastructure development
- Robustification and dissemination of tools
- Fast prototyping vs. evaluating on large applications
- Polyhedral model extensions
- Go beyond affine programs (using approximations?)
- Support data layout transformations natively


## Extra: Scheduling in the Polyhedral Model

## Example: Semantics Preservation (1-D)

Affine
Schedules

## Example: Semantics Preservation (1-D)



## Property (Causality condition for schedules)

Given $R \delta S, \Theta^{R}$ and $\Theta^{S}$ are legal iff for each pair of instances in dependence:

$$
\Theta^{R}\left(\overrightarrow{x_{R}}\right)<\Theta^{S}\left(\overrightarrow{x_{S}}\right)
$$

Equivalently: $\Delta_{R, S}=\Theta^{S}\left(\overrightarrow{x_{S}}\right)-\Theta^{R}\left(\overrightarrow{x_{R}}\right)-1 \geq 0$

## Example: Semantics Preservation (1-D)



## Lemma (Affine form of Farkas lemma)

Let $\mathcal{D}$ be a nonempty polyhedron defined by $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in $\mathcal{D}$ iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{T}(A \vec{x}+\vec{b}), \text { with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0}
$$

$\lambda_{0}$ and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.

## Example: Semantics Preservation (1-D)



## Example: Semantics Preservation (1-D)



## Example: Semantics Preservation (1-D)



$$
\begin{gathered}
\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\overrightarrow{x_{R}}\right)-1=\lambda_{0}+\vec{\lambda}^{T}\left(D_{R, S}\binom{\overrightarrow{x_{R}}}{\vec{x}_{S}}+\vec{d}_{R, S}\right) \geq 0 \\
\left\{\begin{array}{lll}
D_{R \delta S} & \mathbf{i}_{\mathbf{R}} & : \\
\mathbf{i}_{\mathbf{S}} & \vdots & \lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,3}}-\lambda_{D_{1,4}} \\
\mathbf{j} \mathbf{j} & : & -\lambda_{D_{1,1}}+\lambda_{D_{1,2}}+\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
\mathbf{n} & : & \lambda_{D_{1,7}}-\lambda_{D_{1,8}} \\
\mathbf{1} & : & \lambda_{D_{1,4}}+\lambda_{D_{1,6}}+\lambda_{D_{1,8}} \\
n_{D_{1,0}}
\end{array}\right.
\end{gathered}
$$

## Example: Semantics Preservation (1-D)



## Example: Semantics Preservation (1-D)



- Solve the constraint system
- Use (purpose-optimized) Fourier-Motzkin projection algorithm
- Reduce redundancy
- Detect implicit equalities


## Example: Semantics Preservation (1-D)



## Example: Semantics Preservation (1-D)



- One point in the space $\Leftrightarrow$ one set of legal schedules w.r.t. the dependences
- These conditions for semantics preservation are not new! [Feautrier,92]


## Generalization to Multidimensional Schedules

$p$-dimensional schedule is not $p \times 1$-dimensional schedule:

- Once a dependence is strongly satisfied ("loop"-carried), must be discarded in subsequent dimensions
- Until it is strongly satisfied, must be respected ("non-negative")
$\rightarrow$ Combinatorial problem: lexicopositivity of dependence satisfaction


## A solution:

- Encode dependence satisfaction with decision variables [Feautrier,92]

$$
\Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right) \geq \delta, \quad \delta \in\{0,1\}
$$

- Bound schedule coefficients, and nullify the precedence constraint when needed [Vasilache,07]


## Legality as an Affine Constraint

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii) $\forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$,

$$
\begin{equation*}
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq-\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K)+\delta_{p}^{\mathcal{D}_{R, S}} \tag{2}
\end{equation*}
$$

$\rightarrow$ Note: schedule coefficients must be bounded for Lemma to hold
$\rightarrow$ Scalability challenge for large programs

## Extra 2: Results on Loop Fusion/Distribution

## Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)


## Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)
- ... But deciding the best sequence of transformations is hard!
- Conflicting objectives: more SIMD implies less locality, etc.
- It is machine-dependent and of course program-dependent
- Expressive search spaces are required, but challenge the search!


## Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)
- ... But deciding the best sequence of transformations is hard!
- Conflicting objectives: more SIMD implies less locality, etc.
- It is machine-dependent and of course program-dependent
- Expressive search spaces are required, but challenge the search!
- Our approach:
- Convexity: model optimization spaces as convex set (ILP, scan, project, etc.)
- Pruning: make our spaces contain all and only semantically equivalent programs in our framework
- Optimization: decompose in two more tractable sub-problems without any loss of expressiveness, empirical search + ILP models


## Spaces of Affine Loop transformations



## Spaces of Affine Loop transformations



Bounded: $10^{200}$
Legal: $10^{50}$
Empirical search: 10

## Spaces of Affine Loop transformations



1 point $\leftrightarrow 1$ unique transformed program

## Affine Schedule

## Definition (Affine multidimensional schedule)

Given a statement $S$, an affine schedule $\Theta^{S}$ of dimension $m$ is an affine form on the $d$ outer loop iterators $\vec{x}_{S}$ and the $p$ global parameters $\vec{n}$.
$\Theta^{S} \in \mathbb{Z}^{m \times(d+p+1)}$ can be written as:

$$
\Theta^{S}\left(\vec{x}_{S}\right)=\left(\begin{array}{ccc}
\theta_{1,1} & \ldots & \theta_{1, d+p+1} \\
\vdots & & \vdots \\
\theta_{m, 1} & \ldots & \theta_{m, d+p+1}
\end{array}\right) \cdot\left(\begin{array}{c}
\vec{x}_{S} \\
\vec{n} \\
1
\end{array}\right)
$$

$\Theta_{k}^{S}$ denotes the $\mathrm{k}^{\text {th }}$ row of $\Theta^{S}$.

Definition (Bounded affine multidimensional schedule)
$\Theta^{S}$ is a bounded schedule if $\theta_{i, j}^{S} \in[x, y]$ with $x, y \in \mathbb{Z}$

## Space of Semantics-Preserving Affine Schedules



1 point $\leftrightarrow \quad 1$ unique semantically equivalent program (up to affine iteration reordering)

## Semantics Preservation

## Definition (Causality condition)

Given $\Theta^{R}$ a schedule for the instances of $R, \Theta^{S}$ a schedule for the instances of $S . \Theta^{R}$ and $\Theta^{S}$ preserve the dependence $\mathcal{D}_{R, S}$ if $\forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$ :

$$
\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)
$$

$\prec$ denotes the lexicographic ordering.
$\left(a_{1}, \ldots, a_{n}\right) \prec\left(b_{1}, \ldots, b_{m}\right)$ iff $\exists i, 1 \leq i \leq \min (n, m)$ s.t. $\left(a_{1}, \ldots, a_{i-1}\right)=\left(b_{1}, \ldots, b_{i-1}\right)$ and $a_{i}<b_{i}$

## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$


## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$
- Considering the row $p$ of the scheduling matrices:

$$
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}
$$

## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$
- Considering the row $p$ of the scheduling matrices:

$$
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}
$$

- $\delta_{p} \geq 1$ implies no constraints on $\delta_{k}, k>p$
- $\delta_{p} \geq 0$ is required if $\nexists k<p, \delta_{k} \geq 1$


## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$
- Considering the row $p$ of the scheduling matrices:

$$
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}
$$

- $\delta_{p} \geq 1$ implies no constraints on $\delta_{k}, k>p$
- $\delta_{p} \geq 0$ is required if $\nexists k<p, \delta_{k} \geq 1$
- Schedule lower bound:


## Lemma (Schedule lower bound)

Given $\Theta_{k}^{R}, \Theta_{k}^{S}$ such that each coefficient value is bounded in $[x, y]$. Then there exists $K \in \mathbb{Z}$ such that:

$$
\Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right)>-K . \vec{n}-K
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii) $\forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$,

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \quad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}^{\mathcal{D}_{R, S}}
\end{aligned}
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \qquad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}^{\mathcal{D}_{R, S}}-\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K)
\end{aligned}
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \quad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right)-\delta_{p}^{\mathcal{D}_{R, S}}+\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K) \geq 0
\end{aligned}
$$

$\rightarrow$ Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \qquad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right)-\delta_{p}^{\mathcal{D}_{R, S}}+\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K) \geq 0
\end{aligned}
$$

$\rightarrow$ Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]
$\rightarrow$ Bounded coefficients required [Vasilache,07]

## Space of Semantics-Preserving Fusion Choices



All unique semantics-preserving fusion / distribution / code motion choices

1 point $\leftrightarrow \quad 1$ unique semantically equivalent program (up to "partial" statement reordering)

## Fusion in the Polyhedral Model



```
for (i = 0; i <= N; ++i) \(\{\)
 Blue(i);
 Red(i);
\}
```

Perfectly aligned fusion

## Fusion in the Polyhedral Model



```
Blue(0);
for (i = 1; i <= N; ++i) {
 Blue(i);
 Red(i-1);
}
Red (N);
```

Fusion with shift of 1
Not all instances are fused

## Fusion in the Polyhedral Model



```
for (i = 0; i < P; ++i)
 Blue(i);
for (i = P; i <= N; ++i) {
 Blue(i);
 Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
 Red(i-P);
```

Fusion with parametric shift of $P$
Automatic generation of prolog/epilog code

## Fusion in the Polyhedral Model



```
for (i = 0; i < P; ++i)
 Blue(i);
for (i = P; i <= N; ++i) {
 Blue(i);
 Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
 Red(i-P);
```

Many other transformations may be required to enable fusion: interchange, skewing, etc.

## Affine Constraints for Fusibility

- Two statements can be fused if their timestamp can overlap


## Definition (Generalized fusibility check)

Given $v_{R}$ (resp. $v_{S}$ ) the set of vertices of $\mathcal{D}_{R}$ (resp. $\mathcal{D}_{S}$ ). $R$ and $S$ are fusible at level $p$ if, $\forall k \in\{1 \ldots p\}$, there exist two semantics-preserving schedules $\Theta_{k}^{R}$ and $\Theta_{k}^{S}$ such that

$$
\exists\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right) \in v_{R} \times v_{S} \times v_{R}, \quad \Theta_{k}^{R}\left(\vec{x}_{1}\right) \leq \Theta_{k}^{S}\left(\vec{x}_{2}\right) \leq \Theta_{k}^{R}\left(\vec{x}_{3}\right)
$$

- Intersect $\mathcal{L}$ with fusibility and distribution constraints
- Completeness: if the test fails, then there is no sequence of affine transformations that can implement this fusion structure


## Fusion / Distribution / Code Motion

Our strategy:
(1) Build a set containing all unique fusion / distribution / code motion combinations
(2) Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:
(1) R is fully before $\mathrm{S} \rightarrow$ distribution + code motion
(2) R is fully after $\mathrm{S} \rightarrow$ distribution + code motion
(3) otherwise $\rightarrow$ fusion
$\Rightarrow$ It corresponds to all total preorders of $R$ and $S$

## Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$


## Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$
- This set contains one and only one point per distinct total preorder of $n$ elements


## Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$
- This set contains one and only one point per distinct total preorder of $n$ elements
- Easy pruning: just bound the sum of some variables

$$
\text { e.g., } e_{1,2}+e_{4,5}+e_{8,12}<3
$$

- Automatic removal of supersets of unfusible sets


## Convex set of All Unique Total Preorders



- Systematic construction for a given $n$, needs $n^{2}$ Boolean variables
- Enable ILP modeling, enumeration, etc.
- Extension to multidimensional total preorders (i.e., multi-level fusion)


## Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

- Use an intermediate structure to represent sets of statements
- Graph representation of maybe-unfusible sets (1 node per statement)
- Enumerate sets from the smallest to the largest
- Leverage dependence graph + properties of fusion / distribution
- Compute properties by intersecting $\mathcal{L}$ with additional fusion / distribution / code motion affine constraints
- Any individual point can be removed from $O$


## Space of Semantics-Preserving Fusion Choices



All unique semantics-preserving fusion / distribution / code motion choices

1 point $\leftrightarrow \quad 1$ unique semantically equivalent program (up to statement reordering)

## Space of Semantics-Preserving Fusion Choices



All unique semantics-preserving fusion / distribution / code motion choices

1 point $\leftrightarrow \quad$ many unique semantically equivalent programs (up to iteration reordering)

## Space of Semantics-Preserving Fusion Choices



All unique semantics-preserving fusion / distribution / code motion choices

1 point $\leftrightarrow 1$ unique semantically equivalent program (up to limited iteration reordering)

## Objectives for Effective Optimization

Objectives:

- Achieve efficient coarse-grain parallelization
- Combine iterative search of profitable transformations for tiling
$\rightarrow$ loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

- Model-driven approach for automatic parallelization + locality improvement
- Tiling-oriented
- Poor model-driven heuristic for the selection of loop fusion (not portable)
- Overly relaxed definition of fused statements


## Fusibility Restricted to Non-negative Schedules

- Fusibility is not a transitive relation!
- Example: sequence of matrix-by-vector products $x=A b, y=B x, z=C y$
- $x=A b, y=B x$ can be fused, also $y=B x, z=C y$
- They cannot be fused all together
- Determining the Fusibility of a group of statements is reducible to exhibiting compatible pairwise loop permutations
- Extremely easy to compute all possible loop permutations that lead to fuse a pair of statements
- Never check $\mathcal{L}$ on more than two statements!
- Stronger definition of fusion
- Guarantee at most $c$ instances are not fused

$$
-c<\Theta_{k}^{R}(\overrightarrow{0})-\Theta_{k}^{S}(\overrightarrow{0})<c
$$

- No combinatorial choice


## The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:
(1) Compute the space of valid fusion/distribution/code motion choices
(2) Select a fusion/distribution/code motion scheme in this space
(3) Compute an affine schedule that implements this scheme

- Static cost model to select the schedule
- Compound of skewing, shifting, fusion, distribution, interchange, tiling and parallelization (OpenMP)
- Maximize locality for each set of statements to be fused


## Experimental Results

				O			$\mathcal{F}^{1}$					
Benchmark	\#loops	\#stmts	\#refs	\#dim	\#cst	\#points	\#dim	\#cst	\#points	Time	perf-Intel	perf-AMD
advect3d	12	4	32	12	58	75	9	43	26	0.82s	$1.47 \times$	$5.19 \times$
atax	4	4	10	12	58	75	6	25	16	0.06s	$3.66 \times$	$1.88 \times$
bicg	3	4	10	12	58	75	10	52	26	0.05s	$1.75 \times$	$1.40 \times$
gemver	7	4	19	12	58	75	6	28	8	0.06 s	$1.34 \times$	$1.33 \times$
ludcmp	9	14	35	182	3003	$\approx 10^{12}$	40	443	8	0.54s	$1.98 \times$	$1.45 \times$
doitgen	5	3	7	6	22	13	3	10	4	0.08s	$15.35 \times$	$14.27 \times$
varcovar	7	7	26	42	350	47293	22	193	96	0.09s	$7.24 \times$	$14.83 \times$
correl	5	6	12	30	215	4683	21	162	176	0.09s	$3.00 \times$	$3.44 \times$

Table: Search space statistics and performance improvement

- Performance portability: empirical search on the target machine of the optimal fusion structure
- Outperforms state-of-the-art cost models
- Full implementation in the source-to-source polyhedral compiler PoCC


## Conclusion

## Take-home message:

$\Rightarrow$ Clear formalization of loop fusion in the polyhedral model
$\Rightarrow$ Formal definition of all semantically equivalent programs up to:

- statement reordering
- limited affine iteration reordering
- arbitrary affine iteration reordering
$\Rightarrow$ Effective and portable hybrid empirical optimization algorithm (parallelization + data locality)

Future work:

- Develop static cost models for fusion / distribution / code motion
- Use statistical techniques to learn optimization algorithms

