
The Polyhedral Compilation Framework

Louis-Noël Pouchet

Dept. of Computer Science and Engineering
Ohio State University

pouchet@cse.ohio-state.edu

November 18, 2011

Introduction:

Overview of Today’s Lecture

Topic: automatic optimization of applications

What this lecture is about:
I The main ideas behind polyhedral high-level loop transformations
I A (partial) review of the state-of-the-art in polyhedral compilation

I Optimization algorithms
I Available software

And what is is NOT about:
I In-depth compilation algorithms
I Low-level optimizations (e.g., machine-specific code)

Ohio State 2

Introduction:

Compilers

Compilers translate a human-readable program into machine code

I Numerous input languages and paradigm (from ASM to Java)
I Abstraction: a single high-level intermediate representation for programs
I The compiler front-end translates any language to this IR
I Adding a new language requires only extending the front-end

I Make the "most" of the available hardware
I The compiler back-end translates into machine code
I Specific optimizations for each supported architecture
I Adding a new target requires only extending the back-end

I Be reusable: avoid redesign a new compiler for each new chip
I Many optimizations are useful for numerous targets (parallelization,

vectorization, data cache, ...)
I The compiler middle-end maps a program to an (abstract) model of

computation

Ohio State 3

Introduction:

Compiler Middle-end

I Responsible for transforming the program in a form suitable for a better
execution

I Typical: remove dead code (DCE), mutualize common expressions
computation (CSE)

I More advanced: create SIMD-friendly loops, extract task parallelism
I Experimental: algorithm recognition, equivalent program substitution, ...

I Composed of numerous passes, each responsible of a specific
optimization

Ohio State 4

Introduction:

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

Ohio State 5

Introduction:

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

 locality improvement,
= vectorization,
 parallelization, etc...

Ohio State 5

Introduction:

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

 parameter tuning,
= phase ordering,
 etc...

Ohio State 5

Introduction:

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

 pattern recognition,
= hand-tuned kernel codes,
 etc...

Ohio State 5

Introduction:

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

= Auto-tuning libraries

Ohio State 5

Introduction:

Outline

1 High-Level Transformations

2 The Polyhedral Model

3 Program Transformations

4 Tiling

5 Fusion-driven Optimization

6 Polyhedral Toolbox

7 State-of-the-art and Ongoing Research

Ohio State 6

High-Level Transformations:

High-Level Transformations

Ohio State 7

High-Level Transformations:

Running Example: matmult

Example (dgemm)
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] *= beta;
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

for (k = 0; k < nk; ++k)
S2: C[i][j] += alpha * A[i][k] * B[k][j];

I Loop transformation: permute(i,k,S2)
Execution time (in s) on this laptop, GCC 4.2, ni=nj=nk=512

version -O0 -O1 -O2 -O3 -vec
original 1.81 0.78 0.78 0.78
permute 1.52 0.35 0.35 0.20

http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Optimize-Options.html

Ohio State 8

http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Optimize-Options.html

High-Level Transformations:

Running Example: fdtd-2d

Example (fdtd-2d)
for(t = 0; t < tmax; t++) {
for (j = 0; j < ny; j++)

ey[0][j] = _edge_[t];
for (i = 1; i < nx; i++)

for (j = 0; j < ny; j++)
ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);

for (i = 0; i < nx; i++)
for (j = 1; j < ny; j++)
ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);

for (i = 0; i < nx - 1; i++)
for (j = 0; j < ny - 1; j++)
hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +

ey[i+1][j]-ey[i][j]);
}

I Loop transformation: polyhedralOpt(fdtd-2d)
Execution time (in s) on this laptop, GCC 4.2, 64x1024x1024

version -O0 -O1 -O2 -O3 -vec
original 2.59 1.62 1.54 1.54

polyhedralOpt 2.05 0.41 0.41 0.41
Ohio State 9

High-Level Transformations:

Loop Transformations in Production Compilers

Limitations of standard syntactic frameworks:
I Composition of transformations may be tedious

I composability rules / applicability

I Parametric loop bounds, impectly nested loops are challenging
I Look at the examples!

I Approximate dependence analysis
I Miss parallelization opportunities (among many others)

I (Very) conservative performance models

Ohio State 10

High-Level Transformations:

Achievements of Polyhedral Compilation

The polyhedral model:

I Model/apply seamlessly arbitrary compositions of transformations
I Automatic handling of imperfectly nested, parametric loop structures
I Any loop transformation can be modeled

I Exact dependence analysis on a class of programs
I Unleash the power of automatic parallelization
I Aggressive multi-objective program restructuring (parallelism, SIMD,

cache, etc.)

I Requires computationally expensive algorithms
I Usually NP-complete / exponential complexity
I Requires careful problem statement/representation

Ohio State 11

High-Level Transformations:

Compilation Flow

Transformed
program

Input
program

Affine
transformation

framework

Convert
to

Polyhedral IR

Convert
to

original IR

Affine transformation framework:
I Data dependence analysis
I Optimization
I Code generation

Ohio State 12

The Polyhedral Model:

The Polyhedral Model

Ohio State 13

The Polyhedral Model: Overview

Polyhedral Program Optimization: a Three-Stage
Process

1 Analysis: from code to model

→ Existing prototype tools
I PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, SUIF, Omega, Loopo, ChiLL . . .

→ GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code

Ohio State 14

The Polyhedral Model: Overview

Polyhedral Program Optimization: a Three-Stage
Process

1 Analysis: from code to model

→ Existing prototype tools
I PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, SUIF, Omega, Loopo, ChiLL . . .

→ GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code

Ohio State 14

The Polyhedral Model: Overview

Polyhedral Program Optimization: a Three-Stage
Process

1 Analysis: from code to model

→ Existing prototype tools
I PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, SUIF, Omega, Loopo, ChiLL . . .

→ GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code

Ohio State 14

The Polyhedral Model: Overview

Motivating Example [1/2]

Example

for (i = 0; i <= 2; ++i)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;

Program execution:

1: A[0][0] = 0 * 0;
2: A[0][1] = 0 * 1;
3: A[0][2] = 0 * 2;
4: A[1][0] = 1 * 0;
5: A[1][1] = 1 * 1;
6: A[1][2] = 1 * 2;
7: A[2][0] = 2 * 0;
8: A[2][1] = 2 * 1;
9: A[2][2] = 2 * 2;

Ohio State 15

The Polyhedral Model: Overview

Motivating Example [2/2]

A few observations:
I Statement is executed 9 times
I There is a different values for i, j associated to these 9 instances
I There is an order on them (the execution order)

A rough analogy: polyhedral compilation is about (statically)
scheduling tasks, where tasks are statement instances, or operations

Ohio State 16

The Polyhedral Model: Program Representation

Polyhedral Program Representation

I Find a compact representation (critical)
I 1 point in the set↔ 1 executed instance (to allow optimization

operations, such as counting points)
I Can retrieve when the instance is executed (total order on the set)
I Easy manipulation: scanning code must be re-generated
I Deal with parametric and infinite domains
I Non-unit loop strides
I Generalized affine conditionals (union of polyhedra)
I Data-dependent conditionals

Ohio State 17

The Polyhedral Model: Program Representation

Returning to the Example

Example

for (i = 0; i <= 2; ++i)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;

Modeling the iteration domain:
I Polytope dimension: set by the number of surrounding loops
I Constraints: set by the loop bounds

i

j

Ohio State 18

The Polyhedral Model: Program Representation

Returning to the Example

Example

for (i = 0; i <= 2; ++i)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;

Modeling the iteration domain:
I Polytope dimension: set by the number of surrounding loops
I Constraints: set by the loop bounds

(i)0 1 2

0

1

2

(j)

Ohio State 18

The Polyhedral Model: Program Representation

Returning to the Example

Example

for (i = 0; i <= 2; ++i)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;

Modeling the iteration domain:
I Polytope dimension: set by the number of surrounding loops
I Constraints: set by the loop bounds

DR :


1 0
−1 0

0 1
0 −1

 .(i
j

)
+


0
2
0
2

=


1 0 0
−1 0 2

0 1 0
0 −1 2

 .
 i

j
1

≥~0
0≤ i≤ 2, 0≤ j≤ 2

Ohio State 18

The Polyhedral Model: Program Representation

Some Useful Algorithms

All extended to parametric polyhedra:
I Compute the facets of a polytope: PolyLib [Wilde et al]

I Compute the volume of a polytope (number of points): Barvinok
[Clauss/Verdoolaege]

I Scan a polytope (code generation): CLooG [Quillere/Bastoul]

I Find the lexicographic minimum: PIP [Feautrier]

Ohio State 19

The Polyhedral Model: Program Representation

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)

Ohio State 20

The Polyhedral Model: Program Representation

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1
−1 0 1 0

0 1 0 −1
−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0

Ohio State 20

The Polyhedral Model: Program Representation

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs(~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa(~xS2) =

[
1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx(~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1


Ohio State 20

The Polyhedral Model: Program Representation

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1
−1 0 0 3

0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations

Ohio State 20

Program Transformations:

Program Transformations

Ohio State 21

Program Transformations: Scheduling

Scheduling Statement Instances

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[0 1

1 0

](i
j

)  0 1
0 −1
1 0
−1 0

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = 1, 3
do j’ = 1, 2

S(i=j’,j=i’)

Ohio State 22

Program Transformations: Scheduling

Scheduling Statement Instances

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by −1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[−1 0

0 1

](i
j

) −1 0
1 0
0 1
0 −1

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = -1, -2, -1
do j’ = 1, 3

S(i=3-i’,j=j’)

Ohio State 22

Program Transformations: Scheduling

Scheduling Statement Instances

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[0 −1

1 0

](i
j

)  0 −1
0 1
1 0
−1 0

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

Ohio State 22

Program Transformations: Scheduling

Scheduling Statement Instances

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[0 −1

1 0

](i
j

)  0 −1
0 1
1 0
−1 0

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

Ohio State 22

Program Transformations: Scheduling

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule ΘR is an affine form on
the outer loop iterators~xS and the global parameters~n. It is written:

Θ
S(~xS) = TS

~xS
~n
1

 , TS ∈Kp×dim(~xS)+dim(~n)+1

I A schedule assigns a timestamp to each executed instance of a
statement

I If T is a vector, then Θ is a one-dimensional schedule
I If T is a matrix, then Θ is a multidimensional schedule

Ohio State 23

Program Transformations: Scheduling

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance

Ohio State 24

Program Transformations: Scheduling

Program Transformations

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = (1 0 0 0) .

 i
j
n
1



Θ
S2.~xS2 = (0 0 1 1 0) .


i
j
k
n
1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Number of rows of Θ↔ number of outer-most sequential loops

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

~p

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

0 0

~ı

0 0 0

~p

0

c

0

Ohio State 24

Program Transformations: Scheduling

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

Ohio State 24

Program Transformations: Scheduling

Pictured Example

Example of 2 extended dependence graphs

Ohio State 25

Program Transformations: Legal Program Transformation

Legal Program Transformation

A few properties:
I A transformation is illegal if a dependence crosses the hyperplane

backwards
I A dependence going forward between 2 hyperplanes indicates

sequentiality
I No dependence between any point of the hyperplane indicates

parallelism

Definition (Precedence condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS are legal schedules if ∀〈~xR,~xS〉 ∈DR,S:

ΘR(~xR)≺ΘS(~xS)

Ohio State 26

Program Transformations: Legal Program Transformation

A (Naive) Scheduling Approach

I Pick a schedule for the program statements
I Check if it respects all dependences

This is called filtering

Limitations:
I How to use this in combination of an objective function?
I For example, the density of legal 1-d affine schedules is low:

matmult locality fir h264 crout

~i-Bounds −1,1 −1,1 0,1 −1,1 −3,3
c-Bounds −1,1 −1,1 0,3 0,4 −3,3
#Sched. 1.9×104 5.9×104 1.2×107 1.8×108 2.6×1015

⇓
#Legal 6561 912 792 360 798

Ohio State 27

Program Transformations: Legal Program Transformation

Objectives for a Good Scheduling Algorithm

I Build a legal schedule, aka a legal transformation
I Embed some properties in this legal schedule

I latency: minimize the time between the first and last iteration
I parallelism (for placement)
I permutability (for tiling)
I ...

A 2-step approach:
I Find the solution set of all legal affine schedules
I Find an ILP formulation for the objective function

Ohio State 28

Program Transformations: Legal Program Transformation

Selecting a Good Schedule

Build a cost function to select a (good) schedule:
I Minimize latency: bound the execution time

Bound the program execution / find bounded delay [Feautrier]
Given L = w0 +~u.~w, compute min(Θ(~x)−L) s.t. Θ is legal

I Exhibit coarse-grain parallelism
Placement constraints [Lim/Lam]
ΘR(~xR) = ΘS(~xS) for all instances s.t. Θ is legal

I Improve data locality (spatial/temporal reuse)

I Many more possible...

Ohio State 29

Tiling:

Tiling

Ohio State 30

Tiling: Overview

An Overview of Tiling

Tiling: partition the computation into atomic blocs

I Early work in the late 80’s
I Motivation: data locality improvement + parallelization

Ohio State 31

Tiling: Overview

An Overview of Tiling

I Tiling the iteration space
I It must be valid (dependence analysis required)
I It may require pre-transformation
I Unimodular transformation framework limitations

I Supported in current compilers, but limited applicability

I Challenges: imperfectly nested loops, parametric loops,
pre-transformations, tile shape, ...

I Tile size selection
I Critical for locality concerns: determines the footprint
I Empirical search of the best size (problem + machine specific)
I Parametric tiling makes the generated code valid for any tile size

Ohio State 32

Tiling: Overview

Motivating Example

Example (fdtd-2d)
for(t = 0; t < tmax; t++) {

for (j = 0; j < ny; j++)
ey[0][j] = _edge_[t];

for (i = 1; i < nx; i++)
for (j = 0; j < ny; j++)

ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);
for (i = 0; i < nx; i++)

for (j = 1; j < ny; j++)
ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);

for (i = 0; i < nx - 1; i++)
for (j = 0; j < ny - 1; j++)

hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +
ey[i+1][j]-ey[i][j]);

}

Ohio State 33

Tiling: Overview

Motivating Example

Example (FDTD-2D tiled)
for (c0 = 0; c0 <= (((ny + 2 * tmax + -3) * 32 < 0?((32 < 0?-((-(ny + 2 * tmax + -3) + 32 + 1) / 32) : -((-(ny + 2 *
tmax + -3) + 32 - 1) / 32))) : (ny + 2 * tmax + -3) / 32)); ++c0) {

#pragma omp parallel for private(c3, c4, c2, c5)
for (c1 = (((c0 * 2 < 0?-(-c0 / 2) : ((2 < 0?(-c0 + -2 - 1) / -2 : (c0 + 2 - 1) / 2)))) > (((32 * c0 + -tmax + 1) *

32 < 0?-(-(32 * c0 + -tmax + 1) / 32) : ((32 < 0?(-(32 * c0 + -tmax + 1) + -32 - 1) / -32 : (32 * c0 + -tmax + 1 + 32
- 1) / 32))))?((c0 * 2 < 0?-(-c0 / 2) : ((2 < 0?(-c0 + -2 - 1) / -2 : (c0 + 2 - 1) / 2)))) : (((32 * c0 + -tmax + 1) *
32 < 0?-(-(32 * c0 + -tmax + 1) / 32) : ((32 < 0?(-(32 * c0 + -tmax + 1) + -32 - 1) / -32 : (32 * c0 + -tmax + 1 + 32
- 1) / 32))))); c1 <= (((((((ny + tmax + -2) * 32 < 0?((32 < 0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax +
-2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) < (((32 * c0 + ny + 30) * 64 < 0?((64 < 0?-((-(32 * c0 + ny + 30) + 64
+ 1) / 64) : -((-(32 * c0 + ny + 30) + 64 - 1) / 64))) : (32 * c0 + ny + 30) / 64))?(((ny + tmax + -2) * 32 < 0?((32 <
0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax + -2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) : (((32 * c0 +
ny + 30) * 64 < 0?((64 < 0?-((-(32 * c0 + ny + 30) + 64 + 1) / 64) : -((-(32 * c0 + ny + 30) + 64 - 1) / 64))) : (32 *
c0 + ny + 30) / 64)))) < c0?(((((ny + tmax + -2) * 32 < 0?((32 < 0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax
+ -2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) < (((32 * c0 + ny + 30) * 64 < 0?((64 < 0?-((-(32 * c0 + ny + 30) + 64
+ 1) / 64) : -((-(32 * c0 + ny + 30) + 64 - 1) / 64))) : (32 * c0 + ny + 30) / 64))?(((ny + tmax + -2) * 32 < 0?((32 <
0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax + -2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) : (((32 * c0 +
ny + 30) * 64 < 0?((64 < 0?-((-(32 * c0 + ny + 30) + 64 + 1) / 64) : -((-(32 * c0 + ny + 30) + 64 - 1) / 64))) : (32 *
c0 + ny + 30) / 64)))) : c0)); ++c1) {

for (c2 = c0 + -c1; c2 <= (((((tmax + nx + -2) * 32 < 0?((32 < 0?-((-(tmax + nx + -2) + 32 + 1) / 32) : -((-(tmax +
nx + -2) + 32 - 1) / 32))) : (tmax + nx + -2) / 32)) < (((32 * c0 + -32 * c1 + nx + 30) * 32 < 0?((32 < 0?-((-(32 * c0 +
-32 * c1 + nx + 30) + 32 + 1) / 32) : -((-(32 * c0 + -32 * c1 + nx + 30) + 32 - 1) / 32))) : (32 * c0 + -32 * c1 + nx +
30) / 32))?(((tmax + nx + -2) * 32 < 0?((32 < 0?-((-(tmax + nx + -2) + 32 + 1) / 32) : -((-(tmax + nx + -2) + 32 - 1) /
32))) : (tmax + nx + -2) / 32)) : (((32 * c0 + -32 * c1 + nx + 30) * 32 < 0?((32 < 0?-((-(32 * c0 + -32 * c1 + nx + 30)
+ 32 + 1) / 32) : -((-(32 * c0 + -32 * c1 + nx + 30) + 32 - 1) / 32))) : (32 * c0 + -32 * c1 + nx + 30) / 32)))); ++c2)
{

if (c0 == 2 * c1 && c0 == 2 * c2) {
for (c3 = 16 * c0; c3 <= ((tmax + -1 < 16 * c0 + 30?tmax + -1 : 16 * c0 + 30)); ++c3)

if (c0 % 2 == 0)
(ey[0])[0] = (_edge_[c3]);

........... (200 more lines!)

Performance gain: 2-6× on modern multicore platforms
Ohio State 33

Tiling: The Tiling Hyperplane Method

Tiling in the Polyhedral Model

I Tiling partition the computation into blocks
I Note we consider only rectangular tiling here
I For tiling to be legal, such a partitioning must be legal

Ohio State 34

Tiling: The Tiling Hyperplane Method

Key Ideas of the Tiling Hyperplane Algorithm

Affine transformations for communication minimal parallelization and locality
optimization of arbitrarily nested loop sequences
[Bondhugula et al, CC’08 & PLDI’08]

I Compute a set of transformations to make loops tilable
I Try to minimize synchronizations
I Try to maximize locality (maximal fusion)

I Result is a set of permutable loops, if possible
I Strip-mining / tiling can be applied
I Tiles may be sync-free parallel or pipeline parallel

I Algorithm always terminates (possibly by splitting loops/statements)

Ohio State 35

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 1

1-D Jacobi (imperfectly nested)
 for (t=1; t<M; t++) {
 for (i=2; i<N!1; i++) {

S: b[i] = 0.333*(a[i!1]+a[i]+a[i+1]); }
 for (j=2; j<N!1; j++) {

T: a[j] = b[j]; } }

Ohio State 36

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 2

1-D Jacobi (imperfectly nested)

•  The resulting transformation is equivalent to a constant
shift of one for T relative to S, fusion (j and i are named the
same as a result), and skewing the fused i loop with respect
to the t loop by a factor of two.
•  The (1,0) hyperplane has the least communication: no
dependence crosses more than one hyperplane instance
along it.

Ohio State 37

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 3

Transforming S

i

t! t

i!

Ohio State 38

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 4

Transforming T

j

t! t

j!

Ohio State 39

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 5

Interleaving S and T

t! t!

j! i!

Ohio State 40

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 6

Interleaving S and T

t

Ohio State 41

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 7

1-D Jacobi (imperfectly nested) – transformed code
 for (t0=0;t0<=M-1;t0++) {
S’: b[2]=0.333*(a[2-1]+a[2]+a[2+1]);
 for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
S: b[-2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
 +a[-2*t0+t1+1]);

T: a[-2*t0+t1-1]=b[-2*t0+t1-1]; }
T’: a[N-2]=b[N-2]; }

Ohio State 42

Tiling: The Tiling Hyperplane Method

Example: 1D-Jacobi

The Ohio State University Louisiana State University 8

1-D Jacobi (imperfectly nested) – transformed code
 for (t0=0;t0<=M-1;t0++) {
S’: b[2]=0.333*(a[2-1]+a[2]+a[2+1]);
 for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
S: b[-2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
 +a[-2*t0+t1+1]);

T: a[-2*t0+t1-1]=b[-2*t0+t1-1]; }
T’: a[N-2]=b[N-2]; }

!

!

! ! ! ! !

Ohio State 43

Fusion-driven Optimization:

Fusion-driven Optimization

Ohio State 44

Fusion-driven Optimization:

Overview

Problem: How to improve program execution time?

I Focus on shared-memory computation
I OpenMP parallelization
I SIMD Vectorization
I Efficient usage of the intra-node memory hierarchy

I Challenges to address:
I Different machines require different compilation strategies
I One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?

Ohio State 45

Fusion-driven Optimization: The Optimization Challenge

Objectives for a Successful Optimization

During the program execution, interplay between the hardware ressources:
I Thread-centric parallelism
I SIMD-centric parallelism
I Memory layout, inc. caches, prefetch units, buses, interconnects...

→ Tuning the trade-off between these is required

A loop optimizer must be able to transform the program for:
I Thread-level parallelism extraction
I Loop tiling, for data locality
I Vectorization

Our approach: form a tractable search space of possible loop
transformations

Ohio State 46

Fusion-driven Optimization: The Optimization Challenge

Running Example

Original code

Example (tmp = A.B, D = tmp.C)
for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1) {

R: tmp[i1][j1] = 0;
for (k1 = 0; k1 < N; ++k1)

S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
} {R,S} fused, {T,U} fused

for (i2 = 0; i2 < N; ++i2)
for (j2 = 0; j2 < N; ++j2) {

T: D[i2][j2] = 0;
for (k2 = 0; k2 < N; ++k2)

U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];
}

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1×
4× Opteron 8380 / ICC 11 1×

Ohio State 47

Fusion-driven Optimization: The Optimization Challenge

Running Example

Cost model: maximal fusion, minimal synchronization
[Bondhugula et al., PLDI’08]

Example (tmp = A.B, D = tmp.C)
parfor (c0 = 0; c0 < N; c0++) {

for (c1 = 0; c1 < N; c1++) {
R: tmp[c0][c1]=0;
T: D[c0][c1]=0;

for (c6 = 0; c6 < N; c6++)
S: tmp[c0][c1] += A[c0][c6] * B[c6][c1];

parfor (c6 = 0;c6 <= c1; c6++)
U: D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];

} {R,S,T,U} fused
for (c1 = N; c1 < 2*N - 1; c1++)
parfor (c6 = c1-N+1; c6 < N; c6++)

U: D[c0][c6] += tmp[c0][1-c6] * C[c1-c6][c6];
}

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4×
4× Opteron 8380 / ICC 11 1× 2.2×

Ohio State 47

Fusion-driven Optimization: The Optimization Challenge

Running Example

Maximal distribution: best for Intel Xeon 7450
Poor data reuse, best vectorization

Example (tmp = A.B, D = tmp.C)
parfor (i1 = 0; i1 < N; ++i1)
parfor (j1 = 0; j1 < N; ++j1)

R: tmp[i1][j1] = 0;
parfor (i1 = 0; i1 < N; ++i1)

for (k1 = 0; k1 < N; ++k1)
parfor (j1 = 0; j1 < N; ++j1)

S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
{R} and {S} and {T} and {U} distributed

parfor (i2 = 0; i2 < N; ++i2)
parfor (j2 = 0; j2 < N; ++j2)

T: D[i2][j2] = 0;
parfor (i2 = 0; i2 < N; ++i2)

for (k2 = 0; k2 < N; ++k2)
parfor (j2 = 0; j2 < N; ++j2)

U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4× 3.9×
4× Opteron 8380 / ICC 11 1× 2.2× 6.1×

Ohio State 47

Fusion-driven Optimization: The Optimization Challenge

Running Example

Balanced distribution/fusion: best for AMD Opteron 8380
Poor data reuse, best vectorization

Example (tmp = A.B, D = tmp.C)
parfor (c1 = 0; c1 < N; c1++)
parfor (c2 = 0; c2 < N; c2++)

R: C[c1][c2] = 0;
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N;c3++) {
T: E[c1][c3] = 0;

parfor (c2 = 0; c2 < N;c2++)
S: C[c1][c2] += A[c1][c3] * B[c3][c2];

} {S,T} fused, {R} and {U} distributed
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)

U: E[c1][c2] += C[c1][c3] * D[c3][c2];

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4× 3.9× 3.1×
4× Opteron 8380 / ICC 11 1× 2.2× 6.1× 8.3×

Ohio State 47

Fusion-driven Optimization: The Optimization Challenge

Running Example

Example (tmp = A.B, D = tmp.C)
parfor (c1 = 0; c1 < N; c1++)
parfor (c2 = 0; c2 < N; c2++)

R: C[c1][c2] = 0;
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N;c3++) {
T: E[c1][c3] = 0;

parfor (c2 = 0; c2 < N;c2++)
S: C[c1][c2] += A[c1][c3] * B[c3][c2];

} {S,T} fused, {R} and {U} distributed
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)

U: E[c1][c2] += C[c1][c3] * D[c3][c2];

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4× 3.9× 3.1×
4× Opteron 8380 / ICC 11 1× 2.2× 6.1× 8.3×

The best fusion/distribution choice drives the quality of the optimization
Ohio State 47

Fusion-driven Optimization: The Optimization Challenge

Loop Structures

Possible grouping + ordering of statements

I {{R}, {S}, {T}, {U}}; {{R}, {S}, {U}, {T}}; ...
I {{R,S}, {T}, {U}}; {{R}, {S}, {T,U}}; {{R}, {T,U}, {S}}; {{T,U}, {R}, {S}};...
I {{R,S,T}, {U}}; {{R}, {S,T,U}}; {{S}, {R,T,U}};...
I {{R,S,T,U}};

Number of possibilities: >> n! (number of total preorders)

Ohio State 48

Fusion-driven Optimization: The Optimization Challenge

Loop Structures

Removing non-semantics preserving ones

I {{R}, {S}, {T}, {U}}; {{R}, {S}, {U}, {T}}; ...
I {{R,S}, {T}, {U}}; {{R}, {S}, {T,U}}; {{R}, {T,U}, {S}}; {{T,U}, {R}, {S}};...
I {{R,S,T}, {U}}; {{R}, {S,T,U}}; {{S}, {R,T,U}};...
I {{R,S,T,U}}

Number of possibilities: 1 to 200 for our test suite

Ohio State 48

Fusion-driven Optimization: The Optimization Challenge

Loop Structures

For each partitioning, many possible loop structures

I {{R}, {S}, {T}, {U}}
I For S: {i, j,k}; {i,k, j}; {k, i, j}; {k, j, i}; ...
I However, only {i,k, j} has:

I outer-parallel loop
I inner-parallel loop
I lowest striding access (efficient vectorization)

Ohio State 48

Fusion-driven Optimization: The Optimization Challenge

Possible Loop Structures for 2mm

I 4 statements, 75 possible partitionings
I 10 loops, up to 10! possible loop structures for a given partitioning

I Two steps:
I Remove all partitionings which breaks the semantics: from 75 to 12
I Use static cost models to select the loop structure for a partitioning: from

d! to 1

I Final search space: 12 possibilites

Ohio State 49

Fusion-driven Optimization: The Optimization Challenge

Contributions and Overview of the Approach

I Empirical search on possible fusion/distribution schemes
I Each structure drives the success of other optimizations

I Parallelization
I Tiling
I Vectorization

I Use static cost models to compute a complex loop transformation for a
specific fusion/distribution scheme

I Iteratively test the different versions, retain the best
I Best performing loop structure is found

Ohio State 50

Fusion-driven Optimization: The Optimization Challenge

Search Space of Loop Structures

I Partition the set of statements into classes:
I This is deciding loop fusion / distribution
I Statements in the same class will share at least one common loop in the

target code
I Classes are ordered, to reflect code motion

I Locally on each partition, apply model-driven optimizations

I Leverage the polyhedral framework:
I Build the smallest yet most expressive space of possible partitionings

[Pouchet et al., POPL’11]
I Consider semantics-preserving partitionings only: orders of magnitude

smaller space

Ohio State 51

Fusion-driven Optimization: Experimental Results

Summary of the Optimization Process

description #loops #stmts #refs #deps #part. #valid Variability Pb. Size
2mm Linear algebra (BLAS3) 6 4 8 12 75 12 X 1024x1024
3mm Linear algebra (BLAS3) 9 6 12 19 4683 128 X 1024x1024
adi Stencil (2D) 11 8 36 188 545835 1 1024x1024
atax Linear algebra (BLAS2) 4 4 10 12 75 16 X 8000x8000
bicg Linear algebra (BLAS2) 3 4 10 10 75 26 X 8000x8000
correl Correlation (PCA: StatLib) 5 6 12 14 4683 176 X 500x500
covar Covariance (PCA: StatLib) 7 7 13 26 47293 96 X 500x500
doitgen Linear algebra 5 3 7 8 13 4 128x128x128
gemm Linear algebra (BLAS3) 3 2 6 6 3 2 1024x1024
gemver Linear algebra (BLAS2) 7 4 19 13 75 8 X 8000x8000
gesummv Linear algebra (BLAS2) 2 5 15 17 541 44 X 8000x8000
gramschmidt Matrix normalization 6 7 17 34 47293 1 512x512
jacobi-2d Stencil (2D) 5 2 8 14 3 1 20x1024x1024
lu Matrix decomposition 4 2 7 10 3 1 1024x1024

ludcmp Solver 9 15 40 188 1012 20 X 1024x1024
seidel Stencil (2D) 3 1 10 27 1 1 20x1024x1024

Table: Summary of the optimization process

Ohio State 52

Fusion-driven Optimization: Experimental Results

Experimental Setup

We compare three schemes:
I maxfuse: static cost model for fusion (maximal fusion)

I smartfuse: static cost model for fusion (fuse only if data reuse)

I Iterative: iterative compilation, output the best result

Ohio State 53

Fusion-driven Optimization: Experimental Results

Performance Results - Intel Xeon 7450 - ICC 11

 0

 1

 2

 3

 4

 5

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ I

C
C

 -
fa

st
 -

pa
ra

lle
l

Performance Improvement - Intel Xeon 7450 (24 threads)

pocc-maxfuse
pocc-smartfuse

iterative

Ohio State 54

Fusion-driven Optimization: Experimental Results

Performance Results - AMD Opteron 8380 - ICC 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ I

C
C

 -
fa

st
 -

pa
ra

lle
l

Performance Improvement - AMD Opteron 8380 (16 threads)

pocc-maxfuse
pocc-smartfuse

iterative

Ohio State 55

Fusion-driven Optimization: Experimental Results

Performance Results - Intel Atom 330 - GCC 4.3

 0

 5

 10

 15

 20

 25

 30

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ G

C
C

 4
.3

 -
O

3
-f

op
en

m
p

Performance Improvement - Intel Atom 230 (2 threads)

pocc-maxfuse
pocc-smartfuse

iterative

Ohio State 56

Fusion-driven Optimization: Experimental Results

Assessment from Experimental Results

1 Empirical tuning required for 9 out of 16 benchmarks

2 Strong performance improvements: 2.5× - 3× on average

3 Portability achieved:
I Automatically adapt to the program and target architecture
I No assumption made about the target
I Exhaustive search finds the optimal structure (1-176 variants)

4 Substantial improvements over state-of-the-art (up to 2×)

Ohio State 57

Fusion-driven Optimization: Experimental Results

Conclusions

Take-home message:

⇒ Fusion / Distribution / Code motion highly program- and
machine-specific

⇒ Minimum empirical tuning + polyhedral framework gives very good
performance on several applications

⇒ Complete, end-to-end framework implemented and effectiveness
demonstrated

Future work:
I Further pruning of the search space (additional static cost models)
I Statistical search techniques

Ohio State 58

Polyhedral Toolbox:

Polyhedral Toolbox

Ohio State 59

Polyhedral Toolbox:

Polyhedral Software Toolbox

I Analysis:
I Extracting the polyhedral representation of a program: Clan, PolyOpt
I Computing the dependence polyhedra: Candl

I Mathematical operations:
I Doing polyhedral operations on Q-, Z- and Z-polyhedral: PolyLib, ISL
I Solving ILP/PIP problems: PIPLib
I Computing the number of points in a (parametric) polyhedron: Barvinok
I Projection on Q-polyhedra: FM, the Fourier-Motzkin Library

I Scheduling:
I Tiling hyperplane method: PLuTo
I Iterative selection of affine schedules: LetSee

I Code generation:
I Generating C code from a polyhedral representation: CLooG
I Parametric tiling from a polyhedral representation: PrimeTile, DynTile,

PTile

Ohio State 60

Polyhedral Toolbox:

Polyhedral Compilers

Available polyhedral compilers:
I Non-Free:

I IBM XL/Poly
I Reservoir Labs R-Stream

I Free:
I GCC (see the GRAPHITE effort)
I LLVM (see the Polly effort)
I PIPS/Par4All (C-to-GPU support)

I Prototypes (non exhaustive list!):
I PolyOpt from OSU, a polyhedral compiler using parts of PoCC and the

Rose infrastructure
I PoCC, the POlyhedral Compiler Collection

http://pocc.sourceforge.net
Contains Clan, Candl, Pluto, LetSee, PIPLib, PolyLib, FM, ISL, Barvinok,
CLooG, ...

I SUIF, Loopo, Clang+ISL, ...

Ohio State 61

Polyhedral Toolbox:

Polyhedral Methodology Toolbox

I Semantics-preserving schedules:
I Dependence relation finely characterized with dependence polyhedra
I Algorithms should harness the power of this representation (ex: legality

testing, parallelism testing, etc.)

I Scheduling:
I Scheduling algorithm can be greedy (level-by-level) or global
I Beware of scalability
I Special properties can be embedded in the schedule via an ILP (ex:

fusion, tiling, parallelism)

I Mathematics:
I Beware of the distinction between Q-, Z- and Z-polyhedra: always choose

the most relaxed one that fits the problem
I Farkas Lemma is useful to characterize a solution set
I Farkas Lemma is also useful to linearize constraints

Ohio State 62

State-of-the-art and Ongoing Research:

(Partial) State-of-the-art in Polyhedral Compilation

(...In my humble opinion)

I Analysis
I Array Dataflow Analysis [Feautrier,IJPP91]
I Dependence polyhedra [Feautrier,IJPP91] (Candl)
I Non-static control flow support [Benabderrahmane,CC10]

I Program transformations:
I Tiling hyperplane method [Bondhugula,CC08/PLDI08]
I Convex space of all affine schedules [Vasilache,07]
I Iterative search of schedules [Pouchet,CGO07/PLDI08]
I Vectorization [Trifunovic,PACT09]

I Code generation
I Arbitrary affine scheduling functions [Bastoul,PACT04]
I Scalable code generation [Vasilache,CC06/PhD07]
I Parametric Tiling [Hartono et al,ICS09/CGO10]

Ohio State 63

State-of-the-art and Ongoing Research:

Some Ongoing Research [1/2]

I Scalability: provide more scalable algorithms, operating on hundreds of
statements

I Trade-off between optimality and scalability
I Redesigning the framework: introducing approximations

I Vectorization: pre- and post- transformations for vectorization
I Select the appropriate transformations for vectorization
I Generate efficient SIMD code

I Scheduling: get (very) good performance on a wide variety of machines
I Using machine learning to characterize the machine/compiler/program
I Using more complex scheduling heuristics

Ohio State 64

State-of-the-art and Ongoing Research:

Some Ongoing Research [2/2]

I GPU code generation
I Specific parallelism pattern desired
I Generate explicit communications

I Infrastructure development
I Robustification and dissemination of tools
I Fast prototyping vs. evaluating on large applications

I Polyhedral model extensions
I Go beyond affine programs (using approximations?)
I Support data layout transformations natively

Ohio State 65

Scheduling:

Extra: Scheduling in the Polyhedral Model

Ohio State 66

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

Property (Causality condition for schedules)

Given RδS, ΘR and ΘS are legal iff for each pair of instances in dependence:

Θ
R(~xR)< Θ

S(~xS)

Equivalently: ∆R,S = Θ
S(~xS)−Θ

R(~xR)−1≥ 0

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine function f (~x)
is non-negative everywhere in D iff it is a positive affine combination:

f (~x) = λ0 +~λ
T(A~x+~b), with λ0 ≥ 0 and~λ≥~0.

λ0 and ~λT are called the Farkas multipliers.

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Many to one

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

Θ
S(~xS)−Θ

R(~xR)−1 = λ0 +~λ
T
(

DR,S

(
~xR

~xS

)
+~dR,S

)
≥ 0


DRδS iR : λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : λD1,7 −λD1,8

n : λD1,4 +λD1,6 +λD1,8

1 : λD1,0

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

Θ
S(~xS)−Θ

R(~xR)−1 = λ0 +~λ
T
(

DR,S

(
~xR
~xS

)
+~dR,S

)
≥ 0


DRδS iR : −t1R = λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : t1S = −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : t2S = λD1,7 −λD1,8

n : t3S − t2R = λD1,4 +λD1,6 +λD1,8

1 : t4S − t3R −1 = λD1,0

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

I Solve the constraint system
I Use (purpose-optimized) Fourier-Motzkin projection algorithm

I Reduce redundancy
I Detect implicit equalities

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

Ohio State 67

Scheduling:

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Bijection

- Identification

- Projection

I One point in the space⇔ one set of legal schedules
w.r.t. the dependences

I These conditions for semantics preservation are not new! [Feautrier,92]

Ohio State 67

Scheduling:

Generalization to Multidimensional Schedules

p-dimensional schedule is not p × 1-dimensional schedule:
I Once a dependence is strongly satisfied ("loop"-carried), must be

discarded in subsequent dimensions
I Until it is strongly satisfied, must be respected ("non-negative")

→ Combinatorial problem: lexicopositivity of dependence satisfaction

A solution:
I Encode dependence satisfaction with decision variables [Feautrier,92]

ΘS
k(~xS)−ΘR

k (~xR)≥ δ, δ ∈ {0,1}
I Bound schedule coefficients, and nullify the precedence constraint when

needed [Vasilache,07]

Ohio State 68

Scheduling:

Legality as an Affine Constraint

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1 (1)

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S, (2)

Θ
S
p(~xS)−Θ

R
p (~xR)≥−

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)+δ

DR,S
p

→ Note: schedule coefficients must be bounded for Lemma to hold

→ Scalability challenge for large programs

Ohio State 69

Overview:

Extra 2: Results on Loop Fusion/Distribution

Ohio State 70

Overview:

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models

Ohio State 71

Overview:

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models

Ohio State 71

Overview:

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models

Ohio State 71

Overview:

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

Bounded: 10200 Legal: 1050 Empirical search: 10
1 point↔ 1 unique transformed program

Ohio State 72

Overview:

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

Bounded: 10200 Legal: 1050 Empirical search: 10

1 point↔ 1 unique transformed program

Ohio State 72

Overview:

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

Bounded: 10200 Legal: 1050 Empirical search: 10

1 point↔ 1 unique transformed program

Ohio State 72

Polyhedral Model:

Affine Schedule

Definition (Affine multidimensional schedule)

Given a statement S, an affine schedule ΘS of dimension m is an affine form
on the d outer loop iterators~xS and the p global parameters~n.
ΘS ∈ Zm×(d+p+1) can be written as:

Θ
S(~xS) =

θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1

 .

~xS
~n
1


ΘS

k denotes the kth row of ΘS.

Definition (Bounded affine multidimensional schedule)

ΘS is a bounded schedule if θS
i,j ∈ [x,y] with x,y ∈ Z

Ohio State 73

Space of Semantics-Preserving Affine Schedules:

Space of Semantics-Preserving Affine Schedules

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

1 point ↔ 1 unique semantically equivalent program
(up to affine iteration reordering)

Ohio State 74

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction

Semantics Preservation

Definition (Causality condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS preserve the dependence DR,S if ∀〈~xR,~xS〉 ∈DR,S:

Θ
R(~xR)≺Θ

S(~xS)

≺ denotes the lexicographic ordering.

(a1, . . . ,an)≺ (b1, . . . ,bm) iff ∃i, 1≤ i≤ min(n,m) s.t. (a1, . . . ,ai−1) = (b1, . . . ,bi−1)

and ai < bi

Ohio State 75

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0

I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

Ohio State 76

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

Ohio State 76

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

Ohio State 76

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

Ohio State 76

Space of Semantics-Preserving Affine Schedules: Convex Modeling

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

Ohio State 77

Space of Semantics-Preserving Affine Schedules: Convex Modeling

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

Ohio State 77

Space of Semantics-Preserving Affine Schedules: Convex Modeling

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

Ohio State 77

Space of Semantics-Preserving Affine Schedules: Convex Modeling

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p −

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

Ohio State 77

Space of Semantics-Preserving Affine Schedules: Convex Modeling

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)−δ

DR,S
p +

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)≥ 0

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

Ohio State 77

Space of Semantics-Preserving Affine Schedules: Convex Modeling

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)−δ

DR,S
p +

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)≥ 0

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]
Ohio State 77

Space of Semantics-Preserving Fusion Choices:

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to "partial" statement reordering)

Ohio State 78

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model

Fusion in the Polyhedral Model

0 N

for (N
Blue

for (i = 0; i <= N; ++i) {
Blue(i);
Red(i);

}

for (N
Red

Perfectly aligned fusion

Ohio State 79

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model

Fusion in the Polyhedral Model

0 N N+11

for

Blue(0);
for (i = 1; i <= N; ++i) {
Blue(i);
Red(i-1);

}
Red(N);

for (N

Fusion with shift of 1
Not all instances are fused

Ohio State 79

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Fusion with parametric shift of P
Automatic generation of prolog/epilog code

Ohio State 79

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Many other transformations may be required to enable
fusion: interchange, skewing, etc.

Ohio State 79

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model

Affine Constraints for Fusibility

I Two statements can be fused if their timestamp can overlap

Definition (Generalized fusibility check)

Given vR (resp. vS) the set of vertices of DR (resp. DS). R and S are fusible at
level p if, ∀k ∈ {1 . . .p}, there exist two semantics-preserving schedules ΘR

k
and ΘS

k such that

∃(~x1,~x2,~x3) ∈ vR× vS× vR, Θ
R
k (~x1)≤Θ

S
k(~x2)≤Θ

R
k (~x3)

I Intersect L with fusibility and distribution constraints
I Completeness: if the test fails, then there is no sequence of affine

transformations that can implement this fusion structure

Ohio State 80

Space of Semantics-Preserving Fusion Choices: Abstraction

Fusion / Distribution / Code Motion

Our strategy:
1 Build a set containing all unique fusion / distribution / code motion

combinations
2 Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:
1 R is fully before S→ distribution + code motion
2 R is fully after S→ distribution + code motion
3 otherwise→ fusion

⇒ It corresponds to all total preorders of R and S

Ohio State 81

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

Ohio State 82

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

Ohio State 82

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

Ohio State 82

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders

Convex set of All Unique Total Preorders

O =

 0≤ pi,j ≤ 1
0≤ ei,j ≤ 1
0≤ si,j ≤ 1

 constrained to: O =



0≤ pi,j ≤ 1
}

Variables are
binary0≤ ei,j ≤ 1

pi,j + ei,j ≤ 1
}

Relaxed mutual
exclusion

∀k ∈]j,n] ei,j + ei,k ≤ 1+ ej,k
}

Basic transitivity
on eei,j + ej,k ≤ 1+ ei,k

∀k ∈]i, j[pi,k +pk,j ≤ 1+pi,j

}
Basic transitivity
on p

∀k ∈]j,n] ei,j +pi,k ≤ 1+pj,k
 Complex

transitivity
on p and e

ei,j +pj,k ≤ 1+pi,k
∀k ∈]i, j[ek,j +pi,k ≤ 1+pi,j

∀k ∈]j,n] ei,j +pi,j +pj,k ≤ 1+pi,k + ei,k

 Complex
transitivity
on s and p

I Systematic construction for a given n, needs n2 Boolean variables
I Enable ILP modeling, enumeration, etc.
I Extension to multidimensional total preorders (i.e., multi-level fusion)

Ohio State 83

Space of Semantics-Preserving Fusion Choices: Pruning for Semantics Preservation

Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

I Use an intermediate structure to represent sets of statements
I Graph representation of maybe-unfusible sets (1 node per statement)
I Enumerate sets from the smallest to the largest

I Leverage dependence graph + properties of fusion / distribution

I Compute properties by intersecting L with additional fusion / distribution
/ code motion affine constraints

I Any individual point can be removed from O

Ohio State 84

Space of Semantics-Preserving Fusion Choices: Scheduling Considerations

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to statement reordering)

Ohio State 85

Space of Semantics-Preserving Fusion Choices: Scheduling Considerations

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ many unique semantically equivalent programs
(up to iteration reordering)

Ohio State 85

Space of Semantics-Preserving Fusion Choices: Scheduling Considerations

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to limited iteration reordering)

Ohio State 85

Space of Semantics-Preserving Fusion Choices: Effective Optimization

Objectives for Effective Optimization

Objectives:
I Achieve efficient coarse-grain parallelization
I Combine iterative search of profitable transformations for tiling
→ loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

I Model-driven approach for automatic parallelization + locality
improvement

I Tiling-oriented

I Poor model-driven heuristic for the selection of loop fusion (not portable)

I Overly relaxed definition of fused statements

Ohio State 86

Space of Semantics-Preserving Fusion Choices: Refinement of Fusibility

Fusibility Restricted to Non-negative Schedules

I Fusibility is not a transitive relation!
I Example: sequence of matrix-by-vector products x = Ab, y = Bx, z = Cy
I x = Ab, y = Bx can be fused, also y = Bx, z = Cy
I They cannot be fused all together

I Determining the Fusibility of a group of statements is reducible to
exhibiting compatible pairwise loop permutations

I Extremely easy to compute all possible loop permutations that lead to fuse
a pair of statements

I Never check L on more than two statements!

I Stronger definition of fusion
I Guarantee at most c instances are not fused

−c < Θ
R
k (
~0)−Θ

S
k(
~0)< c

I No combinatorial choice

Ohio State 87

Space of Semantics-Preserving Fusion Choices: Full Optimization Algorithm

The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:
1 Compute the space of valid fusion/distribution/code motion choices

2 Select a fusion/distribution/code motion scheme in this space

3 Compute an affine schedule that implements this scheme
I Static cost model to select the schedule
I Compound of skewing, shifting, fusion, distribution, interchange, tiling and

parallelization (OpenMP)
I Maximize locality for each set of statements to be fused

Ohio State 88

Experimental Results:

Experimental Results

O F 1

Benchmark #loops #stmts #refs #dim #cst #points #dim #cst #points Time perf-Intel perf-AMD

advect3d 12 4 32 12 58 75 9 43 26 0.82s 1.47× 5.19×
atax 4 4 10 12 58 75 6 25 16 0.06s 3.66× 1.88×
bicg 3 4 10 12 58 75 10 52 26 0.05s 1.75× 1.40×
gemver 7 4 19 12 58 75 6 28 8 0.06s 1.34× 1.33×
ludcmp 9 14 35 182 3003 ≈ 1012 40 443 8 0.54s 1.98× 1.45×
doitgen 5 3 7 6 22 13 3 10 4 0.08s 15.35× 14.27×
varcovar 7 7 26 42 350 47293 22 193 96 0.09s 7.24× 14.83×
correl 5 6 12 30 215 4683 21 162 176 0.09s 3.00× 3.44×

Table: Search space statistics and performance improvement

I Performance portability: empirical search on the target machine of the
optimal fusion structure

I Outperforms state-of-the-art cost models
I Full implementation in the source-to-source polyhedral compiler PoCC

Ohio State 89

Conclusion:

Conclusion

Take-home message:

⇒ Clear formalization of loop fusion in the polyhedral model

⇒ Formal definition of all semantically equivalent programs up to:
I statement reordering
I limited affine iteration reordering
I arbitrary affine iteration reordering

⇒ Effective and portable hybrid empirical optimization algorithm
(parallelization + data locality)

Future work:
I Develop static cost models for fusion / distribution / code motion
I Use statistical techniques to learn optimization algorithms

Ohio State 90

	High-Level Transformations
	The Polyhedral Model
	Program Transformations
	Tiling
	Fusion-driven Optimization
	Polyhedral Toolbox
	State-of-the-art and Ongoing Research

