
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

http://www.cs.rice.edu/~vsarkar/comp515

COMP 515 Lecture 25 1 December, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

• Other acknowledgments included with individual lectures

2

End-semester Summary

Chapters 7,8,9,11,13 of Allen and Kennedy book

3

Control Dependences

Chapter 7

4

Control Dependences
• Constraints posed by control flow

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE!

If we vectorize by...
S2 A(1:N) = A(1:N) + B(1:N)*C

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

 100 CONTINUE

…we get the wrong answer

• We are missing dependences

• There is a dependence from S1 to S2 - a control dependence

S2 δ1 S1

5

Branch removal for If-conversion
• Basic idea:

—Make a pass through the program.
—Maintain a Boolean expression cc that represents the condition that

must be true for the current expression to be executed
—On encountering a branch, conjoin the controlling expression into cc
—On encountering a target of a branch, its controlling expression is

disjoined into cc

6

Branch Removal: Forward Branches
• Remove forward branches by inserting appropriate guards

! ! DO 100 I = 1,N
C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10
C2 IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
 ENDDO
==>

 DO 100 I = 1,N
 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
 IF(.NOT.m1) m2 = B(I).GT.10
40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
 .AND.m2) B(I) = A(I) - 5

 ENDDO

7

Branch Removal: Forward Branches
• We can simplify to:

 DO 100 I = 1,N

 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)

 B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)

 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

• and then vectorize to:
 m1(1:N) = A(1:N).GT.10

20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

 WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10

40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N)) B(1:N) = B(1:N) + 10

60 WHERE(m1(1:N).OR..NOT.m2(1:N)) A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5

8

Control Flow Graph: Example

9

Examples of Dominator and
Postdominator Trees

10

Control Dependence: Definition

11

Example: Acyclic CFG and its
Control Dependence Graph (CDG)

12

Control Dependence: Discussion
• A node x in directed graph G with a single exit node

postdominates node y in G if any path from y to the exit node
of G must pass through x.

• A statement y is said to be control dependent on another
statement x if:
—there exists a non-trivial path from x to y such that every

statement z≠x in the path is postdominated by y and
—x is not postdominated by y.

• In other words, a control dependence exists from S1 to S2 if
one branch out of S1 forces execution of S2 and another
doesn’t

• Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

13

Example: Cyclic CFG and its CDG

14

CDG for a Cyclic CFG

15

Conclusion
• Idea behind control flow dependences

• If-conversion
—Types of branches and branch removal
—Iterative dependences (append range to each statement)

• Control Dependence Procedure as alternative to if-conversion

• Execution model for control dependence graphs

• Loop Distribution (selective if-conversion)

• Code Generation

16

Compiler Improvement of Register
Usage

Chapter 8

17

Scalar Replacement
• Example: Scalar Replacement in

case of loop independent
dependence

! DO I = 1, N

! ! A(I) = B(I) + C

! ! X(I) = A(I)*Q

! ENDDO

! DO I = 1, N

! ! t = B(I) + C

! ! A(I) = t

! ! X(I) = t*Q

! ENDDO

• One fewer load for each
iteration for reference to A

18

Scalar Replacement
• Example: Scalar Replacement in

case of loop carried dependence
spanning single iteration

!

! DO I = 1, N

! ! A(I) = B(I-1)

! ! B(I) = A(I) + C(I)

! ENDDO

! tB = B(0)

! DO I = 1, N

! ! tA = tB

! ! A(I) = tA

! ! tB = tA + C(I)

! ! B(I) = tB

! ENDDO

• One fewer load for each
iteration for reference to B
which had a loop carried true
dependence spanning 1 iteration

• Also one fewer load per
iteration for reference to A

19

Scalar Replacement
• Example: Scalar Replacement in

case of loop carried dependence
spanning multiple iterations

!

! DO I = 1, N

! ! A(I) = B(I-1) + B(I+1)

! ENDDO

! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• One fewer load for each iteration
for reference to B which had a
loop carried input dependence
spanning 2 iterations

• Invariants maintained were
 t1=B(I-1);t2=B(I);t3=B(I+1)

20

Preloop

Main Loop

Eliminate Scalar Copies
! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• Unnecessary register-register
copies

• Unroll loop 3 times

! t1 = B(0)

! t2 = B(1)

! mN3 = MOD(N,3)

! DO I = 1, mN3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

! DO I = mN3 + 1, N, 3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = B(I+2)

! ! A(I+1) = t2 + t1

! ! t2 = B(I+3)

! ! A(I+2) = t3 + t2

! ENDDO

21

Scalar Replacement: Putting it together
1. Prune dependence graph; Apply typed fusion

2. Select a set of name partitions using register pressure
moderation

3. For each selected partition
A) If non-cyclic, replace using set of temporaries
B) If cyclic replace reference with single temporary
C) For each inconsistent dependence

Use index set splitting or insert loads and stores

4. Unroll loop to eliminate scalar copies

22

Scalar Replacement: Case A
DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

t0A = A(0); t1A0 = A(1);

tB1 = B(0); tB2 = B(1)

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB3 + tB2

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1

23

Scalar Replacement: Case B
! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I)

! ! ENDDO

• replace with single temporary...

 DO I = 1, N

! ! ! tA = B(I) + C(I,J)

! ! ! C(I,J) = tA + D(I)

! ! ENDDO

! ! A(J) = tA

24

Scalar Replacement: Case C
DO I = 1, N

! tAI = A(I-1) + B(I)

! A(I) = tAI

! A(J) = A(J) + tAI

ENDDO

• Split this loop into three
separate parts
— A loop up to J

— Iteration J
— A loop after iteration J to N

tAI = A(0); tAJ = A(J)

JU = MAX(J-1,0)

DO I = 1, JU

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

ENDDO

IF(J.GT.0.AND.J.LE.N) THEN

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

! tAI = tAJ

ENDIF

DO I = JU+2, N

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

ENDDO

A(J) = tAJ

25

Conditions for legality of unroll-and-jam
• Definition: Unroll-and-jam to factor n consists of unrolling the

outer loop n-1 times and fusing those copies together.

• Theorem: An unroll-and-jam to a factor of n is legal iff there
exists no dependence with direction vector (<,>) such that the
distance for the outer loop is less than n.

26

Unroll-and-jam Algorithm
1. Create preloop

2. Unroll main loop m(the unroll-and-jam factor) times

3. Apply typed fusion to loops within the body of the unrolled loop

4. Apply unroll-and-jam recursively to the inner nested loop

27

Unroll-and-jam example
DO I = 1, N

 DO K = 1, N

 A(I) = A(I) + X(I,K)

 ENDDO

 DO J = 1, M

! DO K = 1, N

 ! ! B(J,K) = B(J,K) + A(I)

 ! ENDDO

 ENDDO

 DO J = 1, M

 C(J,I) = B(J,N)/A(I)

 ENDDO

ENDDO

DO I = mN2+1, N, 2

 DO K = 1, N

 A(I) = A(I) + X(I,K)

 A(I+1) = A(I+1) + X(I+1,K)

 ENDDO

 DO J = 1, M

! DO K = 1, N

 ! B(J,K) = B(J,K) + A(I)

! B(J,K) = B(J,K) + A(I+1)

 ! ENDDO

 ! C(J,I) = B(J,N)/A(I)

 ! C(J,I+1) = B(J,N)/A(I+1)

 ENDDO

ENDDO

28

Conclusion
• We have learned two memory hierarchy transformations:

—scalar replacement
—unroll-and-jam

• They reduce the number of memory accesses by maximum use
of processor registers

29

Managing Cache

Allen and Kennedy, Chapter 9

30

Review: How do set-associative caches
work?

31

Cost Assignment
• Consider cost analysis for an innermost loop with N iterations,

for arrays with element size = s, and a cache with line size = l

• Cost is 1 for references that do not depend on loop induction
variables

• Cost is N for references based on induction variables over a
non-contiguous space

• Cost is Ns/l for induction variables based references over
contiguous space

• Multiply the cost by the loop trip count if the reference varies
with the loop index

32

Loop Blocking (Tiling)
• DO J = 1, M

 DO I = 1, N

 D(I) = D(I) + B(I,J)

 ENDDO

 ENDDO

NM/b misses for each of arrays B and D

==> total of 2NM/b misses

b = block (line) size in words (elements)

Assume that N is large enough for elements of D to overflow cache

33

Blocking loop I
• After strip-mine-and-interchange

 DO II = 1, N, S

 DO J = 1, M

 DO I = II, MIN(II+S-1, N)

 D(I) = D(I) + B(I,J)

 ENDDO

 ENDDO

 ENDDO

NM/b + N/b = (1 + 1/M) NM / b misses

 Assume that S is >= b and is also small enough to allow S elements
of D to be held in cache for all iterations of the J loop

34

Blocking Loop J
• DO J = 1, M, T

 DO I = 1, N

 DO jj = J, MIN(J+T-1, M)

 D(I) = D(I) + B(I, jj)

 ENDDO

 ENDDO

 ENDDO

NM/b misses for array B (if T is small enough)

(N/b)*(M/T) misses for array D

==> Total of (1 + 1/T) NM/b misses

35

Legality of Blocking
• Every direction vector for a dependence carried by any of the

loops L0…Lk+1 has either an “=“ or a “<“ in the kth position

• Conservative testing

36

Profitability of Blocking
• Profitable if there is reuse between iterations of a loop that is

not the innermost loop

• Reuse occurs when:
—There’s a small-threshold dependence of any type, including input,

carried by the loop (temporal reuse), or
—The loop index appears, with small stride, in the contiguous

dimension of a multidimensional array and in no other dimension
(spatial reuse)

37

Blocking with Skewing
• For cases where interchange is not possible

• DO I = 1, M

 DO J = 1, N

 A(J+1) = (A(J) + A(J+1))/2

 ENDDO

 ENDDO

38

Blocking with Skewing

39

Blocking with Skewing

40

Prefetch Analysis
• Identify where misses may happen

• Make use of dependence analysis strategy
—Build on generator-based partitioning idea from scalar replacement

• First, ensure that every edge that is unlikely to correspond to
reuse is eliminated from the graph

• Assume that the loop nest has been strip-mined and
interchanged to increase locality

• Traverses the loop and mark ‘ineffective’ for loops without
reuse

41

Prefetch Analysis
• Identify where prefetching is required

• Two cases:
—If the group generator is not contained in a dependence cycle, a

miss is expected on each iteration unless references to the
generator on subsequent iterations display temporal locality

—If the group generator is contained in a dependence cycle, then a
miss is expected only on the first few iterations of the carrying
loop, depending on the distance of the carrying dependence. In this
case, a prefetch to the reference can be placed before the loop
carrying the dependence

42

Insertion for Acyclic Partitions

• DO I = 1, M

 A(I, J) = A(I, J) + A(I-1, J)

 ENDDO

Assuming cache line of length four, then io = 5

and l = 4

43

Insertion for Acyclic Partitions

 prefetch(A(0,J))

 DO I = 1, 3

 A(I, J) = A(I, J) + A(I-1, J)

 ENDDO

 DO I = 4, M, 4

 IU = MIN(M, I+3)

 prefetch(A(IU, J))

 DO ii = I, IU

 A(ii, J) = A(ii, J) + A(ii-1, J)

 ENDDO

 ENDDO

44

Insertion for Cyclic Name Partitions
• Insert prefetch instructions prior to the loop carrying the cycle

• In the case where loop carrying the dependence is an outer
loop, the prefetch can be vectorized
—Place prefetch loop nest outside the loop carrying the backward

dependence of a cyclic name partition
—Rearrange the loop nest so that the loop iterating sequentially over

cache lines is innermost
—Split the innermost loop into two –

– Preloop to the first iteration of the innermost loop contaning a
generator reference beginning on a new cache line and

– Main loop that begins with the iteration containing the new
cache reference.

—Replace the preloop by a prefetch of the first generator reference.
Set the stride of the main loop to the interval between new cache
references.

45

Insertion for Cyclic Name Partitions

• DO J = 1, M

 DO I = 2, 33

 A(I, J) = A(I, J) * B(I)

 ENDDO

 ENDDO

46

Summary

• Two different kind of reuse
—Temporal reuse
—Spatial reuse

• Strategies to increase the two reuse
—Loop Interchange
—Cache Blocking

• Software prefetching

47

Interprocedural Analysis and Optimization

Chapter 11

48

Interprocedural Problem Classification
• May and Must problems

—MOD, REF and USE are ‘May’ problems
—KILL is a ‘Must’ problem

• Flow sensitive and flow insensitive problems
—Flow sensitive: control flow info included in analysis
—Flow insensitive: control flow info is (conservatively) ignored

• May and Must classification can apply to call graph edges as
well

49

Flow Insensitive Side-effect Analysis

• Assumptions
—No procedure nesting i.e., no inner functions
—All parameters passed by reference
—Size of the parameter list bounded by a constant,

• We will formulate and solve MOD(s) problem

50

• DMOD(s): set of variables which are directly modified as side-
effect of call at s (ignoring aliases)

• GMOD(p): set of global variables and formal parameters w of p
that are modified, either directly or indirectly as a result of
invocation of p
—Global variables are modeled as special “parameters” in this

formulation

MOD(s) = DMOD(s)∪ ALIAS(p, x)

x∈DMOD(s)
U

DMOD(s) ={v | s⇒ p, v s⎯ → ⎯ w,w ∈GMOD(p)}

Solving MOD

51

Example: DMOD and GMOD
 S0: CALL P(A,B,C)

 …

 SUBROUTINE P(X,Y,Z)

 INTEGER X,Y,Z

 X = X*Z

 Y = Y*Z

 END

• GMOD(P)={X,Y}

• DMOD(S0)={A,B}

52

Solving for RMOD
• RMOD(p): set of formal parameters in p that may be modified in p,

either directly or by assignment to a reference formal parameter of q
as a side effect of a call of q in p

• Binding Graph GB=(NB,EB)
— One vertex for each formal parameter of each procedure
— Directed edge from formal parameter, f1 of p to formal parameter, f2 of q

if there exists a call site s=(p,q) in p such that f1 is bound to f2

• Use a marking algorithm to compute RMOD(p) (Figure 11.2)
—Mark each vertex as false initially
—Mark formals of P in IMOD(p) as true
—Perform a closure operation (propagate bits)

– Mark f1 as true if GB has an edge from f1 to f2 and f2 is marked true

– Use worklist algorithm (or reverse DFS, if you prefer)
O(NB + EB) running time

53

X Y Z

 P Q

• RMOD(A)={X,Y}

• RMOD(B)={P,Q}

• Complexity:

(1) (1) (0)

(1)(1)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

O(NB + EB)

NB ≤ µN EB ≤ µE

O(N + E)

54

Solving for IMOD+

• After gathering RMOD(p) for all procedures, update RMOD(p)
to IMOD+(p) using this equation

• This can be done in O(NV+E) time

IMOD+(p) = IMOD(p)∪ {z | z s⎯ → ⎯

s =(p,q)
U w, w∈RMOD(q)}

55

Solving for GMOD
• After gathering IMOD+(p) for all procedures, calculate GMOD

(p) according to the following equation

• This can be solved using a DFS algorithm based on Tarjan’s SCR
algorithm on the Call Graph

GMOD(p) = IMOD+(p)∪

s =(p,q)
U GMOD(q)∩ ¬LOCAL

56

Solving for GMOD

rq

p

s

rq

p

s 1

2 3

4

Initialize GMOD(p) to IMOD+(p) on discovery

Update GMOD(p) computation while backing up

57

Solving for GMOD

rq

p

s

rq

p

s 1

3 2

4

Initialize GMOD(p) to IMOD+(p) on discovery

Update GMOD(p) computation while backing up

For each node u in a SCR update GMOD(u) in a cycle

O((N+E)V) Algorithm
58

Allen and Kennedy, Chapter 13

Compiling Array Assignments

59

Safe Scalarization
• Naive algorithm for safe scalarization: Use temporary storage to make

sure scalarization dependences are not created

• Consider:
 A(2:201) = 2.0 * A(1:200)

• can be split up into:
 T(1:200) = 2.0 * A(1:200)

 A(2:201) = T(1:200)

• Then scalarize using SimpleScalarize
 DO I = 1, 200

 T(I) = 2.0 * A(I)

 ENDDO

 DO I = 2, 201

 A(I) = T(I-1)

 ENDDO

60

Loop Reversal

 A(2:256) = A(1:255) + 1.0

• A scalarization approach using loop reversal that avoids the
need for a temporary:

 DO I = 256, 2, -1

 A(I) = A(I-1) + 1.0

 ENDDO

61

Input Prefetching

 A(2:257) = (A(1:256) + A(3:258)) / 2.0

• Causes a scalarization fault when naively scalarized to:
 DO I = 2, 257

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

• Problem: Stores into first element of the LHS in the previous
iteration

• Input prefetching: Use scalar temporaries to store elements of
input and output arrays

62

Input Prefetching

 T1 = A(1)

 DO I = 2, 256

 T2 = (T1 + A(I+1)) / 2.0

 T1 = A(I)

 A(I) = T2

 ENDDO

 T2 = (T1 + A(257)) / 2.0

 A(I) = T2

• Note: We are using scalar replacement, but the motivation for
doing so is different than in Chapter 8

63

General Multidimensional Scalarization
• Goal: To vectorize a single statement which has m vector

dimensions
—Given an ideal order of scalarization (l1, l2, ..., lm)

— (d1, d2, ..., dn) be direction vectors for all plausible and implausible
true dependences of the statement upon itself

—The scalarization matrix is a n × m matrix of these direction
vectors

• For instance:
 A(1:N, 1:N, 1:N) = A(0:N-1, 1:N, 2:N+1) +

 A(1:N, 2:N+1, 0:N-1)

 > = <
 < > =

64

• Once a loop has been selected for scalarization, the dependences
carried by that loop, any dependence whose direction vector does not
contain a = in the position corresponding to the selected loop may be
eliminated from further consideration.

• In our example, if we move the second column to the outside, we get:

 > = < = > <

 < > = > < =

• Scalarization in this way will reduce the matrix to:

 > <

General Multidimensional Scalarization

65

Final exam
• Take-home exam (3 hours)

—Open book: textbook only, no other resources
—Scope of exam is limited to chapters 7, 8, 9, 11, 13
—Exam will be made available on Monday, Dec 5th, and will be due by

5pm on Friday, Dec 16th

66

