
Why Is Functional Programming Important?

Robert “Corky” Cartwright

Department of Computer Science
Rice University

Houston, Texas 77005
USA

cork@rice.edu

24 November, 2015



Models of Computation

Many different models computation but they fall into two broad
categories

Physical: computations are performed by machines that change state
Turing Machines
RAM models
string rewriting systems
unrestricted grammars
term rewriting systems

Mathematical: computations are proofs in a theory of program data
that reduce mathematical expressions to a canonical form. These
expressions are constructed from functions and constants such that
reduction can be performed by a mechanical process (typically a term
rewriting system). See http://epubs.siam.org/doi/abs/10.1137/0213026 or
www.cs.rice.edu/~javaplt/411/12-fall/Readings/RecPrograms.pdf.

Cartwright (Rice) Functional Programming Nov 2015 2 / 6

www.cs.rice.edu/~javaplt/411/12-fall/Readings/RecPrograms.pdf


Which form of model is primary?

An indirect answer
Program verification for a physical program shows that it computes an abstract
function (or satisfies an abstract input-output prediate) written in a functional
language!
Functional programs can be formalized as definitional extensions of a logical theory
of program data. For simple programs, these logical theories are akin to Peano’s
axioms for the natural numbers. The principal axiom (scheme) is structural
induction.
Logicians have studied the idea of definitional extensions to a logical theory but
they typically focus on much uglier forms of definition than simple recursion
equations.
To formalize higher order data (functions, infinite trees and streams, constructive
real numbers), we can generalize these simple logical theories (based on structural
induction) by adding the notion of lazy (non-strict) evaluation. The theories
become more subtle; they assert that every ascending chain of elements (under the
approximation ordering introduced by Dana Scott) has a least upper bound.
Every computable sequential function has a canonical representation as an infinite
(lazy) tree. This a deep result that is unfamiliar to most computer scientists.
Cartwright (Rice) Functional Programming Nov 2015 3 / 6



What is the role of functional progamming in software
engineering?

Functional programming is comparatively easy. When an efficient functional programming
solution is available, seize it! Comp 140 should focus on functional programming (and not
in Python!).
Critical conceptual tool in high-level program design. Even when we implement a program
in an ugly imperative source language (C++, Python, JavaScript?), we still think in terms
of contracts (specifications) that are purely functional. In some cases, these contracts are
easy to write; in others they are tedious and messy. In the latter case, we usually settle for
informal incomplete specifications written in natural language (javadoc, scaladoc, ...) but
executable specifications built from primitives defined in an accompanying functional
program is the emerging model.
Many subcomputations in real systems are best formulated as functional programs or
mostly functional programs. We often make modest use of state for improved
performance; my favorite optimization technique is memoization.
The only easy way to write a parallel program to solve a problem is to decompose the
problem into independent subproblems and glue the answers together using a functional
program. The sweet spot for Cilk, HJ, Habanero Scala is parallel functional programming
where atomic tasks may be locally imperative. (When functional code is compiled, the
internals of the compiled code are imperative.)
Functional programming can be lightweight. Unfortunately, Scala is not. Racket (Scheme)
is very good for small problems. Swift looks promising but I don’t have any experience yet
with the language. I was a Scala evangelist until I wrote some solutions to Comp 411
assignments in Scala.
Cartwright (Rice) Functional Programming Nov 2015 4 / 6



Foundation of Functional Programming: the λ-calculus
WITH CONSTANTS

Every functional language has the λ-calculus or a corresponding
combinatory language at its core.
Why? The λ-calculus only includes the bare essentials of functional
abstraction (expressed using local variables) and application. Nothing
more! But these simple ideas are extremely powerful. In principle, we do
not need explicit recursion or special binding forms like let. This topic is
covered in detail in Comp 411, but let me give you a glimpse.

Cartwright (Rice) Functional Programming Nov 2015 5 / 6



Board Topics Lifted from Comp 411

Call-by-name vs call-by-value. (Note: in imperative languages,
call-by-name becomes very ugly.)
Expanding let into λ.
Eliminating explicit recursion.
Eliminating variables.

Cartwright (Rice) Functional Programming Nov 2015 6 / 6


