Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University



About the Course



Course Overview

. An Introduction to Functional Programming

Lectures: Tuesdays and Thursdays 4pm—5:15pm

. Office hours:

. Corky (Duncan Hall 3104):
. Monday-Friday, 8:30am—-9:30am
. Monday/Wednesday/Friday, 11:00am-12:00pm

Nick: Tuesdays & Thursdays, immediately after class



Course Mechanics

. Course website: https://comp311.rice.edu

. Syllabus and lectures posted here
Lecture topics are subject to change
Piazza: https://piazza.com/rice/fall2019/comp311/home
. Course announcements and Q&A forum
Homework assignments and practice exams posted here



https://comp311.rice.edu/
https://piazza.com/rice/fall2019/comp311/home

Course Overview

No required textbook

. We will draw from a variety of sources

. Coursework consists primarily of biweekly homework

assignments
. Make sure you do these!

. Missing even one assignment will significantly
impact your grade



Homework Assignments

. Think of the assignments in this class as short essays
Focus as much on style as you would for an essay

. 50% of a homework grade is based on clarity and style

« 50% on correctness



Homework Assignments

Projects are due two weeks after being assigned.

. There will be no “slip days” or other late policy. The
assignments are due when they are due.

If you have a serious conflict with the course schedule,

please contact the instructors before the assignment due
date to make arrangements.

. Aiming for roughly 10 hours of coursework per week.

Block this time off now. Make a priority of respecting it.

7



Homework Assignments

. Assignments are published on Thursdays.

. Start on assignments early so that you have time to ask

questions in class, on Piazza, and at office hours.



Homework Assignments

. Assignments will be programming exercises in Scala.

. We will cover the parts of Scala needed for the

assignments in class.



Homework Assignments

You have the option of DrScala and IntelliJ IDEA for
assignments. DrScala is less professional but better
supported.

Installed on all Rice systems and available for
download from the course website.

We will use SVN (turnin on CLEAR) for all assignments.

Instructions on the course website:
https://wiki.rice.edu/confluence/display/FPSCALA/Homework
+Submission+Guide

10


https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide

What is Functional
Programming?



Early Models of Computation

. Turing Machines (Turing)
. Type-0 Grammars (Chomsky)

. The Lambda Calculus (Church)

. ... and many others

12



Early Models of Computation

. Turing Machines (Turing)

. Type-0 Grammars (Chomsky)

. The Lambda Calculus (Church)
. ... and many others

. To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power.

. Suggests there is a deeper structure to the nature of

computation.
13



Turing Machines

Processor » Tape

Processor is a finite state machine that loads and stores
memory cells.

Turing coined the term “compute” and introduced the notion of
storage.

Many programs, languages, and computer architectures are
heavily influenced by this model (and its derivates: Von

Neumann, etc.) . y



Early Models of Computation

. Turing Machines (Turing)

. Type-0 Grammars (Chomsky)

. The Lambda Calculus (Church)
. ... and many others

. To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power.

. Suggests there is a deeper structure to the nature of

computation.
15



The Lambda Calculus

A calculus consists of a set of rules for rewriting symbols

An attempt to rebuild all of mathematics on the notion of
functions and applications

There is no mutation in the lambda calculus

Every program consists solely of applications of functions to
arguments (which are also functions)

Applications of functions return values (which are also

functions)

16



What is Functional
Programming?

A style of programming inspired by the Lambda Calculus as
a foundational model of computation.

17



What is Functional
Programming?

. A style of programming that avoids side effects

Credit Card # g > Digital Book

Card Charged

18



What is Functional
Programming?

. A style of programming that avoids side effects

Credit Card # > > Digital Book
@Che@ Side Effect

19




What is Functional
Programming?

. A style of programming that avoids side effects

_(Digital Book,
Charge Event)

Credit Card #

. All results of a computation are sent as output

20



Why Avoid Side Effects?

Programs are easier to write: There are fewer interactions between
program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily

Programs are easier to read: Pieces of a program can be read and
understood in isolation

Programs are easier to test: Less context needs to be built up before
calling a function to test it

Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic

Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler

21



Why Avoid Side Effects?

Programs are easier to execute in parallel: Because
separate pieces of a computation do not interact, it is
easy to compute them on separate processors

This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

This advantage undermines an often cited argument for
mutation (efficiency)

22



What is Functional
Programming?
. A style of programming that emphasizes functions as
the basis of computation
Functions are applied to arguments
Functions are passed as arguments to other functions

Functions are returned as values of applications

23



Why Emphasize Functions?

Functions allow us to factor out common code
DRY: Don’t Repeat Yourself
. Why is this important?

Passing functions as arguments is often the most
straightforward way to abide by DRY

Returning functions as values is also important for
DRY

24



Why Emphasize Functions?

. Functions allow us to concisely package computations
and move them from one control point to another

. Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

25



A Word on Object-Oriented
Programming

. There is no tension between functional and object-

oriented programming. In fact, OOP can be cast as an
enrichment of FP.
https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

In many ways, they complement one another

. Scala was designed to integrate both styles of
programming

26


https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

