
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

About the Course

2

Course Overview
• An Introduction to Functional Programming

• Lectures: Tuesdays and Thursdays 4pm – 5:15pm

• Office hours:

• Corky (Duncan Hall 3104):

• Monday–Friday, 8:30am–9:30am

• Monday/Wednesday/Friday, 11:00am–12:00pm

• Nick: Tuesdays & Thursdays, immediately after class

3

Course Mechanics

• Course website: https://comp311.rice.edu
• Syllabus and lectures posted here
• Lecture topics are subject to change

• Piazza: https://piazza.com/rice/fall2019/comp311/home
• Course announcements and Q&A forum
• Homework assignments and practice exams posted here

4

https://comp311.rice.edu/
https://piazza.com/rice/fall2019/comp311/home

Course Overview
• No required textbook

• We will draw from a variety of sources

• Coursework consists primarily of biweekly homework
assignments

• Make sure you do these!

• Missing even one assignment will significantly
impact your grade

5

Homework Assignments

• Think of the assignments in this class as short essays

• Focus as much on style as you would for an essay

• 50% of a homework grade is based on clarity and style

• 50% on correctness

6

Homework Assignments
• Projects are due two weeks after being assigned.

• There will be no “slip days” or other late policy. The
assignments are due when they are due.

• If you have a serious conflict with the course schedule,
please contact the instructors before the assignment due
date to make arrangements.

• Aiming for roughly 10 hours of coursework per week.

• Block this time off now. Make a priority of respecting it.
7

Homework Assignments

• Assignments are published on Thursdays.

• Start on assignments early so that you have time to ask
questions in class, on Piazza, and at office hours.

8

Homework Assignments

• Assignments will be programming exercises in Scala.

• We will cover the parts of Scala needed for the
assignments in class.

9

Homework Assignments
• You have the option of DrScala and IntelliJ IDEA for

assignments. DrScala is less professional but better
supported.

• Installed on all Rice systems and available for
download from the course website.

• We will use SVN (turnin on CLEAR) for all assignments.

• Instructions on the course website:
https://wiki.rice.edu/confluence/display/FPSCALA/Homework
+Submission+Guide

10

https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide

What is Functional
Programming?

11

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

12

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power.

• Suggests there is a deeper structure to the nature of
computation.

13

Turing Machines

• Processor is a finite state machine that loads and stores
memory cells.

• Turing coined the term “compute” and introduced the notion of
storage.

• Many programs, languages, and computer architectures are
heavily influenced by this model (and its derivates: Von
Neumann, etc.) .

Processor Tape

14

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power.

• Suggests there is a deeper structure to the nature of
computation.

15

The Lambda Calculus
• A calculus consists of a set of rules for rewriting symbols

• An attempt to rebuild all of mathematics on the notion of
functions and applications

• There is no mutation in the lambda calculus

• Every program consists solely of applications of functions to
arguments (which are also functions)

• Applications of functions return values (which are also
functions)

16

What is Functional
Programming?

A style of programming inspired by the Lambda Calculus as
a foundational model of computation.

17

What is Functional
Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged

18

What is Functional
Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged
Side Effect

19

What is Functional
Programming?

• A style of programming that avoids side effects

• All results of a computation are sent as output

BuyCredit Card #
(Digital Book,
Charge Event)

20

Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions between

program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read and
understood in isolation

• Programs are easier to test: Less context needs to be built up before
calling a function to test it

• Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic

• Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler

21

Why Avoid Side Effects?

• Programs are easier to execute in parallel: Because
separate pieces of a computation do not interact, it is
easy to compute them on separate processors

• This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

• This advantage undermines an often cited argument for
mutation (efficiency)

22

What is Functional
Programming?

• A style of programming that emphasizes functions as
the basis of computation

• Functions are applied to arguments

• Functions are passed as arguments to other functions

• Functions are returned as values of applications

23

Why Emphasize Functions?

• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is this important?

• Passing functions as arguments is often the most
straightforward way to abide by DRY

• Returning functions as values is also important for
DRY

24

Why Emphasize Functions?

• Functions allow us to concisely package computations
and move them from one control point to another

• Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

25

A Word on Object-Oriented
Programming

• There is no tension between functional and object-
oriented programming. In fact, OOP can be cast as an
enrichment of FP.

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another

• Scala was designed to integrate both styles of
programming

26

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

