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Comments and Actions

Lectures are easy to follow but then it is difficult to
know how to apply the material to new situations

e Worksheets”? Smaller homeworks?
Not enough practice with types
e Some dealt with in Homework 6

 Add an additional homework with a type-heavy
component



Mechanical Proof
Checking



Syntax of Propositional
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Factory Methods for
Construction

case object Formulas {
def evar(name: String): Formula
def and(left: Formula, right: Formula): Formula
def or(left: Formula, right: Formula): Formula
def implies(left: Formula, right: Formula): Formula
def not(body: Formula): Formula



Seqguents

Sx - S



Seqguents

e Sequents consist of two parts:
* The antecedents to the left of the turnstile
* The consequentto the right of the turnstile

* Example:

{p, ¢, -1,p =71} —p



Seqguents

* When the set of antecedents consists of a single
formula, we often elide the enclosing braces:

{p}p
* |S equivalent to:

prop



INnference Rules
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Inference Rules:
General Form
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INnference Rules

I'FpAgq
I'Fp
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INnference Rules

I'FpAgq
I'-gq

AND-ELIM-RIGHT




INnference Rules

I'Fp
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OR-INTRO-LEFT




INnference Rules

I'Fp
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INnference Rules
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INnference Rules
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INnference Rules

NEG-ELIM

I'Fp



INnference Rules

'U{p}Fq
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IMPLIES-INTRO




INnference Rules
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INnference Rules

IDENTITY
pEp



INnference Rules

ASSUMPTION
Fu{p}kp



INnference Rules
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Example Proof 1

IDENTITY

prEDp

IMPLIES-INTRO
DEp—op




Example Proof 2

IDENTITY IDENTITY
p—>qbp—yq pEp

IMPLIES-ELIM

{p, p—q}tFq



Example Proof 3

. Y IDENTITY n A IDENTITY
P prr z AND-ELIM-LEFT P prr P AND-ELIM-RIGHT
pA—pkEp pA—pkE—p
NEG-INTRO

O+ —=(pA—p)



Rule Application

case object Rules {

def
def
def
def
def
def
def
def
def
def
def
def
def

identity(p: Formula): Sequent

assumption(s: Sequent): Sequent

generalization(p: Formula) (s: Sequent): Sequent
andIntro(left: Sequent, right: Sequent): Sequent
andElimLeft(s: Sequent): Sequent

andElimRight (s: Sequent): Sequent

orIntrolLeft(p: Formula) (s: Sequent): Sequent
orIntroRight (p: Formula) (s: Sequent): Sequent
orElim(s0O: Sequent, sl: Sequent, s2: Sequent): Sequent
negIntro(p: Formula) (sO: Sequent, sl: Sequent): Sequent
negElim(s: Sequent): Sequent

impliesIntro(s: Sequent): Sequent

impliesElim(p: Formula) (s: Sequent): Sequent



The Curry-Howard
|lsomorphism



SImply Typed Expressions

E ::= X

o1 11 2.
true | false
(x:T) == E
ECE)




Simple Types

T ::= Int
Boolean
T =T




Simple Type Assertions

E:T



Simple Type Assertions

0:1Int



Simple Type Assertions

true:Boolean



Simple Type Assertions

(x:Int) == x : Int => Int



Simple Type Assertions

X :Boolean



Assertions Within a lype
ENnvironment

{Xx:Boolean}  x:Boolean



Rules for Checking the Type
of an Expression

n € IntLiteral
['n:Int

T-INT




Rules for Checking the Type
of an Expression

T-TRUE

I' - true:Boolean

T-FALSE

['+ false:Boolean



Rules for Checking the Type
of an Expression

U{x:S}FE:T
'+ (x:8)=>E : S=>T

T-ABS




Rules for Checking the Type
of an Expression

''+E:S=>T TI'+E:S

; T-APP
I'FE(E):T




Contrast with Implies-Intro
~or Propositional Logic

I'u{p} kg
I'-p—q

IMPLIES-INTRO

'U{x:S} FE:T
' (x:8)=>E : S=>T

T-ABS




Contrast with Implies-Intro
~or Propositional Logic

IF'u{p}tgq
IMPLIES-INTRO
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Contrast with Implies-Elim
~rom Propositional Logic

'Fp—qg TVEFp
Tul'tgq

IMPLIES-ELIM

'+E:S=>T TI'+E:S

; T-APP
I'FE(E):T




Contrast with Implies-Elim
~rom Propositional Logic

'Fp—qg TVEFp

IMPLIES-ELIM
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Types and Propositions

* We can think of the types in our simple type system
as corresponding to propositions:

* Primitive types (Boolean, Int) correspond to
simple propositions (p, Q)

* Arrow types correspond to logic implication:

p ->q, (p -> (q -> r)), etc.



Types and Propositions

* For each syntactic form of expression, there is
exactly one form rule that contains that syntactic

form as Its result

* Example:

U{x:S} FE:T
' (x:8)=>E : S=>T

T-ABS




Types and Propositions

* |f we wish to use type rules to prove that an
expression has a specific type

 We can start with the expression, and apply the
rules backwards:

T-1DENTITY
T-ABS

x:THx:T
D (x:T) =>x : T =>T




Types and Propositions

* While working backwards with expressions, there is
only one choice at each step

* Thus a well-typed expression E entirely determines
the form of the proof that E: T

e But the proof of E: T in our type system is equivalent
to a proof of T in propositional logic



Types and Propositions

* S0, E effectively encodes a proof of type T, thought
of as a proposition

* Checking the type T of an expression E is
equivalent to proving the validity of T



The Curry-Howard
|lsomorphism

* [his deep correspondence between types and
logical assertions is known as the Curry-Howard
[somorphism

* This correspondence goes far beyond just
propositional logic, extending to predicate
calculus, modal logic, etc.

* This leads to the surprising result that the arrow in
arrow types is really just the implication symbol
from propositional logic!



