
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

Homework 0
• Please follow these instructions for checking out your turnin repository as soon as

possible:

• Follow the instructions under Homework Submission Guide at the Course Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment using
turnin

• Please bring problems to our attention as soon as possible

2

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

What is functional
programming?

(continued)

3

Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions between

program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read and
understood in isolation

• Programs are easier to test: Less context needs to be built up before
calling a function to test it

• Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic

• Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler

4

Why Avoid Side Effects?

• Programs are easier to execute in parallel: Because
separate pieces of a computation do not interact, it is
easy to compute them on separate processors

• This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

• This advantage undermines an often cited argument for
mutation (efficiency)

5

What is Functional
Programming?

• A style of programming that emphasizes functions as
the basis of computation

• Functions are applied to arguments

• Functions are passed as arguments to other functions

• Functions are returned as values of applications

6

Why Emphasize Functions?

• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is this important?

• Passing functions as arguments is often the most
straightforward way to abide by DRY

• Returning functions as values is also important for
DRY

7

Why Emphasize Functions?

• Functions allow us to concisely package computations
and move them from one control point to another

• Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

8

A Word on Object-Oriented
Programming

• There is no tension between functional and object-
oriented programming. In fact, OOP can be cast as an
enrichment of FP.

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another

• Scala was designed to integrate both styles of
programming

9

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

A New Paradigm

• Set aside what you’ve learned about programming

• The style we will practice might seem unfamiliar at first

• Initially, the material will seem quite basic

• We will build a solid foundation that will enable us to
explore advanced topics

10

A New Paradigm

• We will re-examine many things we’ve (partially)
learned

• Often in life, the way forward is to rethink our
assumptions

• Later, we can integrate what we’ve learned into our
larger body of knowledge

11

Our first exposure
to computation:

Arithmetic

12

Our First Exposure to Computation:

Arithmetic

13

4 + 5 = 9

14

4 + 5 ↦ 9

expressions are reduced to values

15

Critical Intuition
● Reduction rules (although typically written using

conventional [concrete] syntax) work on abstract
syntax trees (ASTs).

● Every expression in conventional (concrete) syntax
corresponds to an abstract syntax tree.

● Example: (4 + 1) × (5 + 3)

×

+ +

4 1 5 3
16

Critical Intuition II
• Tree structure is typically encoded in concrete

syntax using parentheses
• Example:

normal function application notation, e.g.,
prod(sum(3,1), sum(5,3))

• Expressions with parentheses are hard for humans
to read so common mathematical notation heavily
relies on infix notation for binary operators and
precedence conventions, e.g.,
2 + 3 × 6 vs. 2 × 3 + 6

• Thinking about syntax in terms of ASTs simplifies
reduction rules

17

Expressions are Reduced to
Values

• Rules for a fixed set of operators:

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 9 / 3 ↦ 3

• 42 ↦ 16

• √4 ↦ 2

18

Expressions are Reduced to
Values

To reduce an operator applied to expressions, first reduce
the subexpressions, left to right:

(4 + 1) × (5 + 3) ↦

5 × (5 + 3) ↦

5 × 8 ↦

40

19

Expressions are Reduced to
Values

A precedence is defined on operators to help us decide
what to reduce next:

4 + 1 × 5 + 3 ↦

4 + 5 + 3 ↦

9 + 3 ↦

12

20

New Operations Often Introduce
New Types of Values

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 4 / 5 ↦ 0.8

• 42 ↦ 16

• √-1 ↦ i

21

Old Operations on New Types of Values
Often Introduce Yet More New Types of

Values

1 + i

22

So, what are types?

23

Values Have
Value Types

Definition: A value type is a name for a collection of
values with common properties.

24

Values Have
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more

25

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

26

Expressions Have
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static Type Value Type

27

Rules for Static Types

• If an expression is a value, its static type is its value type

5: 𝐍
• With each operator, there are “if-then” rules stating the

required static types of the operands, and the static type of
the application:

Integer Addition: If the operands to + are of type N
then the application is of type N

28

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

Not quite.

29

Expressions Have
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so good…

30

Expressions Have
Static Types

16 / 0: 𝐐 ↦ ?

31

Expressions Have
Static Types

Definition (Attempt 2): A static type is an assertion that
either an expression reduces to a value with a particular

value type, or one of a well-defined set of exceptional
events occurs.

32

Why Static Types?

• Using our rules, we can determine whether an
expression has a static type.

• If it does, we say the expression is well-typed, and we
know that proceeding with our computation is type
safe:

Either our computation will finish with a value of the
determined value type, or one of a well-defined
exceptional events will occur.

33

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What else?

34

What are the Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?

35

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• We run out of some finite resource

36

Our second exposure
to computation:

Algebra

37

Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2

38

And We Learn How to
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11

39

The Substitution Rule of
Computation

• To reduce an application of a function to a set of
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each
parameter replaced by the corresponding argument

40

Using the Substitution Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17

41

What About Types?

• Eventually, we learn that our functions need to include
rules indicating the required types of their arguments,
and the types of applications

• You might have seen notation like this in a math class:

f: 𝐙 → 𝐙

42

Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?

43

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 𝐙 and
produces values with value type 𝐙

(or one of a well-defined set of exceptional events occurs).

44

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type 𝐙
then the application expression has static type 𝐙.

45

