Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

Homework 0

Please follow these instructions for checking out your turnin repository as soon as

possible:

Follow the instructions under Homework Submission Guide at the Course Website

Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
Hello, world!

This submission is not for credit
We will let you know if we have not received your submission

You will be responsible for successfully submitting your hw_1 assignment using
turnin

Please bring problems to our attention as soon as possible

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

What is functional
programming?
(continued)

Why Avoid Side Effects?

Programs are easier to write: There are fewer interactions between
program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily

Programs are easier to read: Pieces of a program can be read and
understood in isolation

Programs are easier to test: Less context needs to be built up before
calling a function to test it

Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic

Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler

4

Why Avoid Side Effects?

Programs are easier to execute in parallel: Because
separate pieces of a computation do not interact, it is
easy to compute them on separate processors

This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

This advantage undermines an often cited argument for
mutation (efficiency)

What is Functional
Programming?
. A style of programming that emphasizes functions as
the basis of computation
Functions are applied to arguments
Functions are passed as arguments to other functions

Functions are returned as values of applications

Why Emphasize Functions?

Functions allow us to factor out common code
DRY: Don’t Repeat Yourself
. Why is this important?

Passing functions as arguments is often the most
straightforward way to abide by DRY

Returning functions as values is also important for
DRY

Why Emphasize Functions?

. Functions allow us to concisely package computations
and move them from one control point to another

. Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

A Word on Object-Oriented
Programming

. There is no tension between functional and object-

oriented programming. In fact, OOP can be cast as an
enrichment of FP.
https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

In many ways, they complement one another

. Scala was designed to integrate both styles of
programming

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

A New Paradigm

. Set aside what you’ve learned about programming
. The style we will practice might seem unfamiliar at first
Initially, the material will seem quite basic

. We will build a solid foundation that will enable us to
explore advanced topics

10

A New Paradigm

. We will re-examine many things we’ve (partially)
learned

. Often in life, the way forward is to rethink our
assumptions

Later, we can integrate what we’ve learned into our

larger body of knowledge

11

Our first exposure

to computation:
Arithmetic

Our First Exposure to Computation:

Arithmetic

13

4+5=9

4+5H—9

expressions are reduced to values

15

Critical Intuition

® Reduction rules (although typically written using
conventional [concrete] syntax) work on abstract

syntax trees (ASTs).
e Every expression in conventional (concrete) syntax

corresponds to an abstract syntax tree.
e Example: (4+ 1) x(5+ 3)

16

Critical Intuition Il

Tree structure is typically encoded in concrete
syntax using parentheses

Example:

normal function application notation, e.g.,
prod(sum(3,1), sum(5,3))

Expressions with parentheses are hard for humans
to read so common mathematical notation heavily
relies on infix notation for binary operators and
precedence conventions, e.g.,

2+3x6 vs. 2x3+6

Thinking about syntax in terms of ASTs simplifies
reduction rules

17

Expressions are Reduced to
Values

. Rules for a fixed set of operators:

« 4+5m—9
e 4-5H -1
- 4x5—20
- 9/3—3
. 4> +— 16

+ V4 > 2

18

Expressions are Reduced to
Values

To reduce an operator applied to expressions, first reduce
the subexpressions, left to right:

(4+1) x(5+3)—
5x(5+3)—
b x 8 H—

40

19

Expressions are Reduced to
Values

A precedence is defined on operators to help us decide
what to reduce next:

4+1x5+3mH~
4+5+3—
O+ 3>

12

20

New Operations Often Introduce
New Types of Values

« 4+5—9
« 4-51r -1
e« 4 x5 20
- 4/5— 0.8
. 42— 16
. V-1

21

Old Operations on New Types of Values
Often Introduce Yet More New Types of
Values

22

So, what are types?

Values Have
Value Types

Definition: A value type is a name for a collection of
values with common properties.

24

Values Have
Value Types

. Examples of value types:

. Natural numbers
. Integers
. Floating point numbers

. And many more

25

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

26

Expressions Have
Static Types

: N

4+5 N+

\O

Static Type Value Type

Rules for Static Types

If an expression is a value, its static type is its value type

5:-N

. With each operator, there are “if-then” rules stating the
required static types of the operands, and the static type of
the application:

Integer Addition: If the operands to + are of type N
then the application is of type N

28

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

Not quite.

29

Expressions Have
Static Types

16/20: Q — 0.8: Q

So far, so good...

Expressions Have
Static Types

16/0:Q — 7

Expressions Have
Static Types

Definition (Attempt 2): A static type is an assertion that
either an expression reduces to a value with a particular
value type, or one of a well-defined set of exceptional
events occurs.

32

Why Static Types?

Using our rules, we can determine whether an
expression has a static type.

If it does, we say the expression is well-typed, and we
know that proceeding with our computation is type

safe:

Either our computation will finish with a value of the
determined value type, or one of a well-defined
exceptional events will occur.

33

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

. A “division by zero” error

. What else?

34

What are the Well-Defined
Exceptional Events in Arithmetic?

. A “division by zero” error

. What if we run out of paper?

. Or pencil lead? Or erasers?

. What if we run out of time?

35

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

. A “division by zero” error

. We run out of some finite resource

36

Our second exposure
to computation:
Algebra

Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = X2+ y?

38

And We Learn How to
Compute With Them

f(x) = 2x + 1

f(3 + 2)
£(5)
(2x5)+ 1>
10+ 1 —

11

39

The Substitution Rule of
Computation

. To reduce an application of a function to a set of

arguments:
. Reduce the arguments, left to right

. Reduce the body of the function, with each
parameter replaced by the corresponding argument

40

Using the Substitution Rule

f(x,y) = x*+ y?

f(4-53+1)—
f(-1,3+ 1) —
f(-1,4) —
-12+ 42—
1+ 16—

17

41

What About Types?

. Eventually, we learn that our functions need to include
rules indicating the required types of their arguments,
and the types of applications

. You might have seen notation like this in a math class:

[—Z

42

Typing Rules for Functions

£ —Z

What does this rule mean?

43

Typing Rules for Functions

£ —Z

. We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type Z and
produces values with value type Z

(or one of a well-defined set of exceptional events occurs).

44

Typing Rules for Functions

£ —Z

. We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type Z
then the application expression has static type Z.

45

