
Comp 311
Functional

Programming
Nick Vrvilo, Two Sigma Investments

Robert “Corky” Cartwright, Rice University

Homework 0
• Please follow these instructions for checking out your turnin repository as soon

as possible:

• Follow the instructions under Homework Submission Guide at the Course
Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of
text, Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment
using turnin

• Please bring problems to our attention as soon as possible

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

So, what are types?

Values Have
Value Types

Definition: A value type is a name for a collection of
values with common properties.

Values Have
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a

particular value type.

Expressions Have
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static
Type

Value
Type

Rules for Static Types
• If an expression is a value, its static type is its value

type

5: 𝐍

• With each operator, there are “if-then” rules stating
the required static types of the operands, and the
static type of the application:

Integer Addition: If the operands to + are of type N
then the application is of type N

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a

particular value type.

Not quite.

Expressions Have
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so
good…

Expressions Have
Static Types

16 / 0: 𝐐 ↦ ?

Expressions Have
Static Types

Definition (Attempt 2): A static type is an assertion
that either an expression reduces to a value with a
particular value type, or one of a well-defined set of

exceptional events occurs.

Why Static Types?

• Using our rules, we can determine whether an
expression has a static type.

• If it does, we say the expression is well-typed, and
we know that proceeding with our computation is
type safe:

Either our computation will finish with a value of
the determined value type, or one of a well-
defined exceptional events will occur.

What Constitutes the Set of Well-
Defined Exceptional Events in

Arithmetic?

• A “division by zero” error

• What else?

What are the Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?

What Constitutes the Set of Well-
Defined Exceptional Events in

Arithmetic?

• A “division by zero” error

• We run out of some finite resource

Our Second Exposure to
Computation:

Algebra

Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2

And We Learn How to
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11

The Substitution Rule of
Computation

• To reduce an application of a function to a set of
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each
parameter replaced by the corresponding
argument

Using the Substitution
Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17

What About Types?

• Eventually, we learn that our functions need to
include rules indicating the required types of their
arguments, and the types of applications

• You might have seen notation like this in a math
class:

f: 𝐙 → 𝐙

Typing Rules for
Functions

f: 𝐙 → 𝐙

What does this rule mean?

Typing Rules for
Functions

f: 𝐙 → 𝐙

• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type
𝐙 and produces values with value type 𝐙

(or one of a well-defined set of exceptional events
occurs).

Typing Rules for
Functions

f: 𝐙 → 𝐙

• We can also interpret the arrow as logical
implication:

If f is applied to an argument expression with static
type 𝐙 then the application expression has static type

𝐙.

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?

The Substitution Rule Allows
for Computations that Never

Finish
f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…

The Substitution Rule Allows for
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…

But We Need at Least Limited Recursion
to Define Common Algebraic Constructs

{ 1 if n = 0

n(n -1)! if n > 0
n! =

!:
𝐍→𝐍

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger (unbounded
space)

Our Third Exposure to
Computation:

Core Scala

Core Scala

• We will continue to use algebra as our model of
computation

• We will switch to Scala syntax

• We will introduce new value types

Value Types in Core
Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14

Boolean: false, true

String: “Hello, world!”

Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:

e + eʹ e - eʹ e * eʹ e / eʹ

• For each operator:

• If both arguments to an application of an operator are
of type Int then the application is of type Int

• If both arguments to an application of an operator are
of type Double then the application is of type Double

Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:

e == eʹ e <= eʹ e >= eʹ

e > eʹ e < eʹ

• For each operator:

• If both arguments to an application of an operator are of
type Int then the application is of type Boolean

• If both arguments to an application of an operator are of
type Double then the application is of type Boolean

Some Primitive Operators
on Booleans in Core Scala

Conjunction, Disjunction:

e & eʹ e | eʹ

• In both cases:

• If both arguments to an application are of type
Boolean then the application is of type Boolean

More Primitive Operators on
Booleans in Core Scala

Negation:

!e

• If the argument to an application is of type Boolean
then the application is of type Boolean

Yet More Primitive
Operators on Booleans in

Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ

• If the first argument is of type Boolean and the
second and third argument are of the same type 𝑇
then the application is of type 𝑇

Primitive Operators on
Strings in Core Scala

String Concatenation:

e + eʹ

• If both arguments are of type String then the
application is of type String

An Example Function
Definition in Core Scala

def square(x: Double) = x * x

Syntax for Defining
Functions

• If there is no recursion, we do not need to declare
the return type:

def fnName(arg0: type0, …, argk: typek):returnType =

expr

def fnName(arg0: type0, …, argk: typek) =

expr

The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦

6.0 * 6.0 ↦
36.0

The Nature of Ints

Fixed Size Ints

• Unlike the integers we might write on a sheet of
paper, the values of type Int are of a fixed size

• For every n: Int,

-231 ≤ n ≤ 231-1

Fixing the Size of Numbers
Has Many Benefits

• The time needed to compute the application of an
operation on two numbers is bounded

• The space needed to store a number is bounded

• We can easily reuse the space used for one
number to store another

But We Need to Concern
Ourselves with Overflow

• If we compute a value larger than 231-1, our
representation will “wrap around”

2147483647 + 1 ↦ -2147483648

The Moral of Computing
with Ints

• If possible, determine the range of potential results
of a computation

• Ensure that this range is no larger than the range
of representable values of type Int

• Otherwise, include in your computation a check for
overflow

The Nature of Doubles

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very
small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to
efficiently represent approximate values that span a
large range

Scientific Notation

6.022 × 1023

mantissa exponent

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least
1 but less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

Doubles

• Values of type Double are stored as with fixed
sized numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed
in the form:

± m 2e

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

The Nature of Doubles

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very
small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to
efficiently represent approximate values that span a
large range

Scientific Notation

6.022 × 1023

mantissa exponent

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least
1 but less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

Doubles

• Values of type Double are stored as with fixed
sized numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed
in the form:

± m 2e

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

Representations of Doubles

• Many quantities have more than one representation
in this format:

1024 ✕ 2500

512 ✕ 2501

Distances Between Doubles

• The distance between adjacent values of type
Double is not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves
away from zero

Operations and Rounding

• Arithmetic operations round to the closest
representable value

• Ties are broken by choosing the value with the
smaller absolute value

Overflow with Doubles

• Computations on Doubles that result in values
larger than the largest finite Double are represented
with special values:

Double.PositiveInfinity

Double.NegativeInfinity

Underflow with Doubles

• Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero
Double are represented with special values:

0.0 -0.0

Division By Zero

• Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity

Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity

Division By Zero

• Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

