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Homework 0
• Please follow these instructions for checking out your turnin repository as soon 

as possible:

• Follow the instructions under Homework Submission Guide at the Course 
Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of 
text, Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment 
using turnin

• Please bring problems to our attention as soon as possible

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311


So, what are types?



Values Have 
Value Types

Definition: A value type is a name for a collection of 
values with common properties.



Values Have 
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more



Expressions Have 
Static Types

Definition (Attempt 1): A static type is an assertion 
that an expression reduces to a value with a 

particular value type.



Expressions Have 
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static 
Type

Value 
Type



Rules for Static Types
• If an expression is a value, its static type is its value 

type

5: 𝐍

• With each operator, there are “if-then” rules stating 
the required static types of the operands, and the 
static type of the application:

Integer Addition: If the operands to + are of type N 
then the application is of type N



Expressions Have 
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a 

particular value type.

Not quite.



Expressions Have 
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so 
good…



Expressions Have 
Static Types

16 / 0: 𝐐 ↦ ?



Expressions Have 
Static Types

Definition (Attempt 2): A static type is an assertion
that either an expression reduces to a value with a 
particular value type, or one of a well-defined set of 

exceptional events occurs.



Why Static Types?

• Using our rules, we can determine whether an 
expression has a static type.

• If it does, we say the expression is well-typed, and 
we know that proceeding with our computation is 
type safe:

Either our computation will finish with a value of 
the determined value type, or one of a well-
defined exceptional events will occur.



What Constitutes the Set of Well-
Defined Exceptional Events in 

Arithmetic?

• A “division by zero” error

• What else?



What are the Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?



What Constitutes the Set of Well-
Defined Exceptional Events in 

Arithmetic?

• A “division by zero” error

• We run out of some finite resource



Our Second Exposure to 
Computation:

Algebra



Now, We Learn How to Define Our 
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2



And We Learn How to 
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11



The Substitution Rule of 
Computation

• To reduce an application of a function to a set of 
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each 
parameter replaced by the corresponding 
argument



Using the Substitution 
Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17



What About Types?

• Eventually, we learn that our functions need to 
include rules indicating the required types of their 
arguments, and the types of applications

• You might have seen notation like this in a math 
class:

f: 𝐙 → 𝐙



Typing Rules for 
Functions

f: 𝐙 → 𝐙

What does this rule mean?



Typing Rules for 
Functions

f: 𝐙 → 𝐙

• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 
𝐙 and produces values with value type 𝐙

(or one of a well-defined set of exceptional events 
occurs).



Typing Rules for 
Functions

f: 𝐙 → 𝐙

• We can also interpret the arrow as logical 
implication:

If f is applied to an argument expression with static 
type 𝐙 then the application expression has static type 

𝐙.



What are The Exceptional 
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?



The Substitution Rule Allows 
for Computations that Never 

Finish
f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…



The Substitution Rule Allows for 
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…



But We Need at Least Limited Recursion 
to Define Common Algebraic Constructs

{ 1                  if n = 0

n(n -1)!         if n > 0
n! =

!: 
𝐍→𝐍



What are The Exceptional 
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops                 
(unbounded time)

• The computation keeps getting larger   (unbounded 
space)



Our Third Exposure to 
Computation:

Core Scala



Core Scala

• We will continue to use algebra as our model of 
computation

• We will switch to Scala syntax

• We will introduce new value types 



Value Types in Core 
Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14

Boolean: false, true

String: “Hello, world!”



Primitive Operators on Ints 
and Doubles in Core Scala

Algebraic operators:

e + eʹ     e - eʹ     e * eʹ     e / eʹ

• For each operator:

• If both arguments to an application of an operator are 
of type Int then the application is of type Int

• If both arguments to an application of an operator are 
of type Double then the application is of type Double



Primitive Operators on Ints 
and Doubles in Core Scala

Comparison operators:

e == eʹ     e <= eʹ     e >= eʹ     

e > eʹ      e < eʹ

• For each operator:

• If both arguments to an application of an operator are of 
type Int then the application is of type Boolean

• If both arguments to an application of an operator are of 
type Double then the application is of type Boolean



Some Primitive Operators 
on Booleans in Core Scala

Conjunction, Disjunction:   

e & eʹ     e | eʹ    

• In both cases:

• If both arguments to an application are of type 
Boolean then the application is of type Boolean



More Primitive Operators on 
Booleans in Core Scala

Negation:     

!e

• If the argument to an application is of type Boolean 
then the application is of type Boolean



Yet More Primitive 
Operators on Booleans in 

Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ  

• If the first argument is of type Boolean and the 
second and third argument are of the same type 𝑇
then the application is of type 𝑇



Primitive Operators on 
Strings in Core Scala

String Concatenation:

e + eʹ  

• If both arguments are of type String then the 
application is of type String



An Example Function 
Definition in Core Scala

def square(x: Double) = x * x



Syntax for Defining 
Functions

• If there is no recursion, we do not need to declare 
the return type:

def fnName(arg0: type0, …, argk: typek):returnType = 

expr

def fnName(arg0: type0, …, argk: typek) = 

expr



The Substitution Rule Works 
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦

6.0 * 6.0 ↦
36.0



The Nature of Ints



Fixed Size Ints

• Unlike the integers we might write on a sheet of 
paper, the values of type Int are of a fixed size

• For every n: Int,

-231 ≤ n ≤ 231-1



Fixing the Size of Numbers 
Has Many Benefits

• The time needed to compute the application of an 
operation on two numbers is bounded

• The space needed to store a number is bounded

• We can easily reuse the space used for one 
number to store another



But We Need to Concern 
Ourselves with Overflow

• If we compute a value larger than 231-1, our 
representation will “wrap around”

2147483647 + 1 ↦ -2147483648 



The Moral of Computing 
with Ints

• If possible, determine the range of potential results 
of a computation

• Ensure that this range is no larger than the range 
of representable values of type Int

• Otherwise, include in your computation a check for 
overflow



The Nature of Doubles



Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very 
small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to 
efficiently represent approximate values that span a 
large range



Scientific Notation

6.022 × 1023

mantissa exponent



Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 
1 but less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size



Doubles

• Values of type Double are stored as with fixed 
sized numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed 
in the form:

± m 2e



Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53



Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971



The Nature of Doubles



Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very 
small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to 
efficiently represent approximate values that span a 
large range



Scientific Notation

6.022 × 1023

mantissa exponent



Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 
1 but less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size



Doubles

• Values of type Double are stored as with fixed 
sized numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed 
in the form:

± m 2e



Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53



Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971



Representations of Doubles

• Many quantities have more than one representation 
in this format:

1024 ✕ 2500

512 ✕ 2501



Distances Between Doubles

• The distance between adjacent values of type 
Double is not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves 
away from zero



Operations and Rounding

• Arithmetic operations round to the closest 
representable value

• Ties are broken by choosing the value with the 
smaller absolute value



Overflow with Doubles

• Computations on Doubles that result in values 
larger than the largest finite Double are represented 
with special values:

Double.PositiveInfinity

Double.NegativeInfinity



Underflow with Doubles

• Computations on Doubles that result in values with 
magnitudes smaller than the smallest non-zero 
Double are represented with special values:

0.0        -0.0



Division By Zero

• Division of a non-zero finite value by a zero value 
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity



Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity



Division By Zero

• Division of a zero value by a zero value results in 
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN


