
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 3, 2019

Homework 0
• Please follow these instructions for checking out your turnin repository as soon as

possible:

• Follow the instructions under Homework Submission Guide at the Course Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment using
turnin

• Please bring problems to our attention as soon as possible

2

https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide
https://comp311.rice.edu/

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”

3

The Nature of Ints

4

Fixed Size Ints

• Unlike the integers we might write on a sheet of paper,
the values of type Int are of a fixed size.

• For every n: Int,

-231 ≤ n ≤ 231 – 1

5

Fixing the Size of Numbers
Has Many Benefits

• The time needed to compute the application of an
operation on two numbers is bounded.

• The space needed to store a number is bounded.

• We can easily reuse the space used for one number to
store another.

6

But We Need to Concern
Ourselves with Overflow

• If we compute a value larger than 231 – 1, our
representation will “wrap around” (i.e., overflow):

2147483647 + 1 ↦ -2147483648

7

The Moral of Computing with
Ints

• If possible, determine the range of potential results of a
computation

• Ensure that this range is no larger than the range of
representable values of type Int

• Otherwise, include in your computation a check for
overflow

8

The Nature of Doubles

9

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to efficiently
represent approximate values that span a large range

10

Scientific Notation

6.022 × 10 23

mantissa

exponent

base

11

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but
less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

12

Doubles

• Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed in
the form:

± m×2 e

13

Doubles

± m×2 e

• 1 ≤ m ≤ 2 53 – 1

• -1022 ≤ e ≤ 971

For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

14

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Representations of Doubles

• Many quantities have more than one representation in
this format:

1024 × 2500

512 × 2501

15

Distances Between Doubles

• The distance between adjacent values of type Double is
not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves away
from zero

16

Operations and Rounding

• Arithmetic operations round to the closest
representable value

• Ties are broken by choosing the value with the
smaller absolute value

17

Overflow with Doubles

• Computations on Doubles that result in values larger
than the largest finite Double are represented with
special values:

Double.PositiveInfinity

Double.NegativeInfinity

18

Underflow with Doubles

• Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero Double
are represented with special values:

0.0 -0.0

19

Division By Zero

• Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity

20

Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity

21

Division By Zero

• Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

22

Doubles Break Common
Algebraic Properties

Addition is not associative:

(0.1 + 0.2) + 0.3 ↦
0.6000000000000001

0.1 + (0.2 + 0.3) ↦
0.6

23

Doubles Break Common
Algebraic Properties

• Equality is not reflexive:

Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) ↦
30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 ↦
30.0

24

Morals of Floating Point
Computation

• Avoid floating point computation whenever you need to
compute precise numeric values (such as monetary
values)

• Use floating point values only when calculating with
inexact measurements over a range larger than can be
represented with precise arithmetic

25

Morals of Floating Point
Computation

• Try to bound the margin of error in your calculation

• Don’t test for equality directly

• Instead of writing:

x == y

• Write:

abs(x - y) <= tolerance

26

Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

What’s wrong here?

abs(-0.0) ↦

if (-0.0 >= 0) -0.0 else -(-0.0) ↦

if (true) -0.0 else -(-0.0) ↦

-0.0

27

Defining Absolute Value

def abs(x: Double) = if (x > 0) x else 0.0 - x

Does it work now?

abs(-0.0) ↦

if (-0.0 > 0) -0.0 else 0.0 - -0.0 ↦

if (false) -0.0 else 0.0 - -0.0 ↦

0.0 - -0.0

0.0

28

Review:
Computation by Reduction

29

Arithmetic Operations

30

Operation Static Type Examples

v1 + v2

v1 - v2

v1 * v2

v1 / v2

Int × Int → Int
Double × Double → Double

5 - 1 ↦ 4
9 / 0 ↦ ⊥
9.0 / 0.0 ↦

Double.PositiveInfinity

+ v
- v

Int → Int
Double → Double

-(0) ↦ 0
+(-7) ↦ -7
-(-7) ↦ 7

- (0.0) ↦ -0.0

v.toDouble Int → Double 3.toDouble ↦ 3.0

Comparison Operations

31

Operation Static Type Examples

v1 == v2

v1 != v2

τ × τ → Boolean
v1: τ v2: τ

"x" == "x" ↦ true
false != false ↦ false
(-0.0) == 0.0 ↦ true

v1 < v2

v1 <= v2

v1 > v2

v1 >= v2

Int × Int → Boolean
Double × Double → Boolean

1 < 1 ↦ false
5 > 4 ↦ true

Double.NegativeInfinity
<= Double.NaN ↦ false

Logical Operations

32

Operation Static Type Examples

v1 & v2

v1 | v2
Boolean × Boolean → Boolean

true & true ↦ true
true & false ↦ false
false | true ↦ true

! v Boolean → Boolean
! true ↦ false
! false ↦ true

Function Applications
Given a function definition

def fn(x0: T0, x1: T1, …, xN: TN): TR = {
exprbody

}

we get a corresponding reduction rule:

fn(v0,v1,…,vN) ↦ { exprbody[x0↦v0,x1↦v1,…,xN↦vN] }

i.e., the function application reduces to the function body
expression, but with a new rule for each formal
parameter’s symbol, reducing the symbol to the
corresponding argument value from the application.

33

Function Application
Example

def square(x: Double) = x * x

square(6.0) ↦
6.0 * 6.0 ↦

36.0

34

Conditional Expressions

35

Computing Conditional
Expressions

• We used a bit of hand-waiving when presenting if
expressions

if (e1) e2 else e3

• According to the substitution model of computation,
how do we compute the value of this expression?

36

Computing Conditional
Expressions

if (e1) e2 else e3

• First we compute e1 ↦ v1, then e2 ↦ v2, then e3
↦ v3

• If v1 is true then reduce to v2

• Otherwise reduce to v3

37

But Consider the Following
Expression

if (false) 1/0 else 3

This expression should reduce to 3

38

New Rule for Conditional
Expressions

• To reduce an if expression:

• Reduce the test clause

• If the test clause reduces to true, reduce the
then clause

• Otherwise, reduce the else clause

39

Short-Circuiting Logical
Operations as If-Expressions

Short-circuiting operations can be rewritten as equivalent
if-expressions:

• x && y ↦ if (x) y else false

• x || y ↦ if (x) true else y

Therefore, we use the same deferred-evaluation rule for
the right-hand argument of short-circuiting operations as
we use for an if-expression’s then/else subexpressions.

40

Conditional and Short-
Circuiting Operations

41

Rule Static Type

if (true) expr1 else expr2 ↦ expr1

if (false) expr1 else expr2 ↦ expr2

Boolean × τ × τ → τ
expr1: τ expr2: τ

true && expr2 ↦ expr2

false && expr2 ↦ false

true || expr2 ↦ true
false || expr2 ↦ expr2

Boolean × Boolean → Boolean

What are The Exceptional
Events in Core Scala?

• A “division by zero” error on Ints (but not Doubles)

• We run out of some finite resource

• The computation never stops

• The computation uses too much memory

42

Programming With
Intention

43

Programming With Intention

• There is far too much broken software in the world…

• The number of mission critical domains affected by
programming is increasing

• Space exploration and satellites, defense, medical
devices, automobiles, finance

44

Programming With Intention

• Static types help us reduce some errors by restricting
the potential results of a computation

• We still need to defend against exceptional events

• And we need to defend against silent errors

• Silent errors are actually our most insidious risk

45

Scala Comments

/* Multi
Line
Comment */

/** Scala-doc-style
* multiline comment
*/

// single line comment

46

Scala supports Java-style comments:

Contract for Factorial

def factorial(n: Int): Int = {
require(0 <= n & n <= 12)
// ... implementation ...

} ensuring(result => result > 0)

47

Syntax and Typing of Contracts

def fnName(arg0: Type0, …, argk: Typek): ReturnType = {

require(expr)

expr

} ensuring (expr)

• The static type of the expr in require(expr) is Boolean

• The static type of the expr in ensuring(expr) is

ReturnType ⇒ Boolean

48

Unary Lambda Expressions
for the Ensuring Clause
result => result == 1

result => 0.0 < result & result < 1.0

result => 0 > result | result > 10

• result => … indicates a unary function of result.

• The static type of the argument result is inferred from the

context of the ensuring clause; i.e., it’s the ReturnType of

the corresponding function’s body expression.

• The lambda expression body must return a Boolean.
49

More Complex Contracts

def fnName(arg0: Type0, …, argk: Typek): ReturnType = {

require(exprprecondition₀)

require(exprprecondition₁)

require(exprpreconditionₖ)

exprfunction_body

} ensuring(exprpostcondition₀)

. ensuring(exprpostcondition₁)

. ensuring(exprpostconditionₖ)

50

