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Homework 0
• Please follow these instructions for checking out your turnin repository as soon as 

possible:

• Follow the instructions under Homework Submission Guide at the Course Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text, 
Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment using 
turnin

• Please bring problems to our attention as soon as possible
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https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide
https://comp311.rice.edu/


Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”
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The Nature of Ints
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Fixed Size Ints

• Unlike the integers we might write on a sheet of paper, 
the values of type Int are of a fixed size.

• For every n: Int,

-231 ≤ n ≤ 231 – 1
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Fixing the Size of Numbers 
Has Many Benefits

• The time needed to compute the application of an 
operation on two numbers is bounded.

• The space needed to store a number is bounded.

• We can easily reuse the space used for one number to 
store another.
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But We Need to Concern 
Ourselves with Overflow

• If we compute a value larger than 231 – 1, our 
representation will “wrap around” (i.e., overflow):

2147483647 + 1 ↦ -2147483648 
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The Moral of Computing with 
Ints

• If possible, determine the range of potential results of a 
computation

• Ensure that this range is no larger than the range of 
representable values of type Int

• Otherwise, include in your computation a check for 
overflow
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The Nature of Doubles
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Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to efficiently 
represent approximate values that span a large range
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Scientific Notation

6.022 × 10 23

mantissa

exponent

base
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Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but 
less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size
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Doubles

• Values of type Double are stored as with fixed sized 
numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed in 
the form:

± m×2 e

13



Doubles

± m×2 e

• 1 ≤ m ≤ 2 53 – 1

• -1022 ≤ e ≤ 971

For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
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https://en.wikipedia.org/wiki/Double-precision_floating-point_format


Representations of Doubles

• Many quantities have more than one representation in 
this format:

1024 × 2500

512 × 2501
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Distances Between Doubles

• The distance between adjacent values of type Double is 
not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves away 
from zero
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Operations and Rounding

• Arithmetic operations round to the closest 
representable value

• Ties are broken by choosing the value with the 
smaller absolute value
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Overflow with Doubles

• Computations on Doubles that result in values larger 
than the largest finite Double are represented with 
special values:

Double.PositiveInfinity

Double.NegativeInfinity
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Underflow with Doubles

• Computations on Doubles that result in values with 
magnitudes smaller than the smallest non-zero Double 
are represented with special values:

0.0        -0.0
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Division By Zero

• Division of a non-zero finite value by a zero value 
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity
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Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity
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Division By Zero

• Division of a zero value by a zero value results in 
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN
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Doubles Break Common 
Algebraic Properties

Addition is not associative:

(0.1 + 0.2) + 0.3 ↦  
0.6000000000000001

0.1 + (0.2 + 0.3) ↦                 
0.6
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Doubles Break Common 
Algebraic Properties

• Equality is not reflexive:

Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) ↦ 
30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 ↦        
30.0
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Morals of Floating Point 
Computation

• Avoid floating point computation whenever you need to 
compute precise numeric values (such as monetary 
values)

• Use floating point values only when calculating with 
inexact measurements over a range larger than can be 
represented with precise arithmetic
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Morals of Floating Point 
Computation

• Try to bound the margin of error in your calculation 

• Don’t test for equality directly

• Instead of writing:

x == y

• Write: 

abs(x - y) <= tolerance
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Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

What’s wrong here?

abs(-0.0) ↦

if (-0.0 >= 0) -0.0 else -(-0.0) ↦

if (true) -0.0 else -(-0.0) ↦

-0.0

27



Defining Absolute Value

def abs(x: Double) = if (x > 0) x else 0.0 - x

Does it work now?

abs(-0.0) ↦

if (-0.0 > 0) -0.0 else 0.0 - -0.0 ↦

if (false) -0.0 else 0.0 - -0.0 ↦

0.0 - -0.0

0.0
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Review:
Computation by Reduction
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Arithmetic Operations
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Operation Static Type Examples

v1 + v2

v1 - v2

v1 * v2

v1 / v2

Int × Int → Int
Double × Double → Double

5 - 1 ↦ 4
9 / 0 ↦ ⊥
9.0 / 0.0 ↦ 

Double.PositiveInfinity

+ v
- v

Int → Int
Double → Double

-(0) ↦ 0
+(-7) ↦ -7
-(-7) ↦ 7

- (0.0) ↦ -0.0

v.toDouble Int → Double 3.toDouble ↦ 3.0



Comparison Operations
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Operation Static Type Examples

v1 == v2

v1 != v2

τ × τ → Boolean
v1: τ v2: τ

"x" == "x" ↦ true
false != false ↦ false
(-0.0) == 0.0 ↦ true

v1 < v2

v1 <= v2

v1 > v2

v1 >= v2

Int × Int → Boolean
Double × Double → Boolean

1 < 1 ↦ false
5 > 4 ↦ true

Double.NegativeInfinity
<= Double.NaN ↦ false



Logical Operations
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Operation Static Type Examples

v1 & v2

v1 | v2
Boolean × Boolean → Boolean

true & true ↦ true
true & false ↦ false
false | true ↦ true

! v Boolean → Boolean
! true ↦ false
! false ↦ true



Function Applications
Given a function definition

def fn(x0: T0, x1: T1, …, xN: TN): TR = {
exprbody

}

we get a corresponding reduction rule:

fn(v0,v1,…,vN) ↦ { exprbody[x0↦v0,x1↦v1,…,xN↦vN] }

i.e., the function application reduces to the function body 
expression, but with a new rule for each formal 
parameter’s symbol, reducing the symbol to the 
corresponding argument value from the application.
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Function Application 
Example

def square(x: Double) = x * x

square(6.0) ↦
6.0 * 6.0 ↦

36.0
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Conditional Expressions
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Computing Conditional 
Expressions

• We used a bit of hand-waiving when presenting if
expressions

if (e1) e2 else e3

• According to the substitution model of computation, 
how do we compute the value of this expression?
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Computing Conditional 
Expressions

if (e1) e2 else e3

• First we compute e1 ↦ v1, then e2 ↦ v2, then e3 
↦ v3

• If v1 is true then reduce to v2

• Otherwise reduce to v3
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But Consider the Following 
Expression

if (false) 1/0 else 3

This expression should reduce to 3
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New Rule for Conditional 
Expressions

• To reduce an if expression:

• Reduce the test clause

• If the test clause reduces to true, reduce the 
then clause

• Otherwise, reduce the else clause
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Short-Circuiting Logical 
Operations as If-Expressions

Short-circuiting operations can be rewritten as equivalent 
if-expressions:

• x && y  ↦  if (x) y else false

• x || y  ↦  if (x) true else y

Therefore, we use the same deferred-evaluation rule for 
the right-hand argument of short-circuiting operations as 
we use for an if-expression’s then/else subexpressions.
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Conditional and Short-
Circuiting Operations
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Rule Static Type

if (true) expr1 else expr2 ↦ expr1

if (false) expr1 else expr2 ↦ expr2

Boolean × τ × τ → τ
expr1: τ expr2: τ

true && expr2 ↦ expr2

false && expr2 ↦ false

true || expr2 ↦ true
false || expr2 ↦ expr2

Boolean × Boolean → Boolean



What are The Exceptional 
Events in Core Scala?

• A “division by zero” error on Ints (but not Doubles)

• We run out of some finite resource

• The computation never stops

• The computation uses too much memory
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Programming With 
Intention
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Programming With Intention

• There is far too much broken software in the world…

• The number of mission critical domains affected by 
programming is increasing

• Space exploration and satellites, defense, medical 
devices, automobiles, finance
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Programming With Intention

• Static types help us reduce some errors by restricting 
the potential results of a computation

• We still need to defend against exceptional events

• And we need to defend against silent errors

• Silent errors are actually our most insidious risk
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Scala Comments

/* Multi
Line
Comment */

/** Scala-doc-style
* multiline comment
*/

// single line comment
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Scala supports Java-style comments:



Contract for Factorial

def factorial(n: Int): Int = {
require(0 <= n & n <= 12)
// ... implementation ...

} ensuring(result => result > 0)
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Syntax and Typing of Contracts

def fnName(arg0: Type0, …, argk: Typek): ReturnType = {

require(expr)

expr

} ensuring (expr)

• The static type of the expr in require(expr) is Boolean

• The static type of the expr in ensuring(expr) is

ReturnType ⇒ Boolean
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Unary Lambda Expressions
for the Ensuring Clause
result => result == 1

result => 0.0 < result & result < 1.0

result => 0 > result | result > 10

• result => … indicates a unary function of result.

• The static type of the argument result is inferred from the 

context of the ensuring clause; i.e., it’s the ReturnType of 

the corresponding function’s body expression.

• The lambda expression body must return a Boolean.
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More Complex Contracts

def fnName(arg0: Type0, …, argk: Typek): ReturnType = {

require(exprprecondition₀)

require(exprprecondition₁)

require(exprpreconditionₖ)

exprfunction_body

} ensuring(exprpostcondition₀)

. ensuring(exprpostcondition₁)

. ensuring(exprpostconditionₖ)
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