Comp 311 Functional Programming

Nick Vrvilo, Two Sigma Investments Robert "Corky" Cartwright, Rice University

September 3, 2019

Homework 0

- Please follow these instructions for checking out your turnin repository as soon as possible:
 - Follow the instructions under <u>Homework Submission Guide</u> at the <u>Course Website</u>
 - Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
 Hello, world!
 - This submission is not for credit
 - We will let you know if we have not received your submission
 - You will be responsible for successfully submitting your hw_1 assignment using turnin
 - · Please bring problems to our attention as soon as possible

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: "Hello, world!"

The Nature of Ints

Fixed Size Ints

- Unlike the integers we might write on a sheet of paper, the values of type Int are of a fixed size.
- For every n: Int,

$$-2^{31} \le n \le 2^{31} - 1$$

Fixing the Size of Numbers Has Many Benefits

- The time needed to compute the application of an operation on two numbers is bounded.
- The space needed to store a number is bounded.
- We can easily reuse the space used for one number to store another.

But We Need to Concern Ourselves with Overflow

• If we compute a value larger than 2^{31} – 1, our representation will "wrap around" (i.e., overflow):

 $2147483647 + 1 \mapsto -2147483648$

The Moral of Computing with Ints

- If possible, determine the range of potential results of a computation
 - Ensure that this range is no larger than the range of representable values of type Int
- Otherwise, include in your computation a check for overflow

The Nature of Doubles

Scientific Notation

- Numeric values in scientific computations can span enormous ranges, from the very large to the very small
- At the same time, scientific measurements are of limited precision
- "Scientific notation" was devised in order to efficiently represent approximate values that span a large range

Scientific Notation

$$6.022 \times 10^{23}$$
mantissa base

Scientific Notation and Efficient Computation

- We normalize the mantissa so that its value is at least 1 but less than 10
- If we
 - Set the number of digits in the mantissa to a fixed precision, and
 - Set the number of digits in the exponent to a fixed precision
- Then all numbers in our notation are of a fixed size

Doubles

- Values of type Double are stored as with fixed sized numbers in scientific notation, but with a few differences:
 - Finite, nonzero numeric values can be expressed in the form:

$$\pm m \times 2^e$$

Doubles

$$\pm m \times 2^e$$

•
$$1 \le m \le 2^{53} - 1$$

•
$$-1022 \le e \le 971$$

For more details, you can read about double-precision binary representation: https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Representations of Doubles

 Many quantities have more than one representation in this format:

$$1024 \times 2^{500}$$

$$512 \times 2^{501}$$

Distances Between Doubles

- The distance between adjacent values of type Double is not constant
 - The values are most dense near zero
 - They grow sparser exponentially as one moves away from zero

Operations and Rounding

- Arithmetic operations round to the closest representable value
 - Ties are broken by choosing the value with the smaller absolute value

Overflow with Doubles

 Computations on Doubles that result in values larger than the largest finite Double are represented with special values:

Double.PositiveInfinity

Double.NegativeInfinity

Underflow with Doubles

 Computations on Doubles that result in values with magnitudes smaller than the smallest non-zero Double are represented with special values:

0.0 - 0.0

Division By Zero

 Division of a non-zero finite value by a zero value results in an infinite value:

1.0 / 0.0 → Double.PositiveInfinity

 $1.0 / -0.0 \rightarrow Double.NegativeInfinity$

Division By Zero

As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 → Double.PositiveInfinity

Division By Zero

 Division of a zero value by a zero value results in another special value NaN (for "Not a Number"):

 $0.0 / 0.0 \rightarrow Double.NaN$

 $-0.0 / 0.0 \mapsto Double.NaN$

Doubles Break Common Algebraic Properties

Addition is not associative:

$$0.1 + (0.2 + 0.3) \rightarrow 0.6$$

Doubles Break Common Algebraic Properties

• Equality is not reflexive:

Multiplication does not distribute over addition:

$$100.0 * 0.1 + 100.0 * 0.2 \rightarrow 30.0$$

Morals of Floating Point Computation

- Avoid floating point computation whenever you need to compute precise numeric values (such as monetary values)
- Use floating point values only when calculating with inexact measurements over a range larger than can be represented with precise arithmetic

Morals of Floating Point Computation

- Try to bound the margin of error in your calculation
- Don't test for equality directly
 - Instead of writing:

• Write:

Defining Absolute Value

```
def abs(x: Double) = if (x \ge 0) x else -x
What's wrong here?
abs(-0.0) \rightarrow
if (-0.0 >= 0) -0.0 else -(-0.0) \rightarrow
if (true) -0.0 else -(-0.0) →
-0.0
```

Defining Absolute Value

```
def abs(x: Double) = if (x > 0) x else 0.0 - x
Does it work now?
abs(-0.0) \rightarrow
if (-0.0 > 0) -0.0 else 0.0 - -0.0 \rightarrow
if (false) -0.0 else 0.0 - -0.0 →
0.0 - -0.0
0.0
```

Review: Computation by Reduction

Arithmetic Operations

Operation	Static Type	Examples
$V_1 + V_2$		5 - 1 → 4
$v_1 - v_2$	Int × Int → Int	$9 / 0 \mapsto \bot$
$V_1 * V_2$	Double × Double → Double	9.0 / 0.0 →
v_1 / v_2		Double.PositiveInfinity
		$-(0) \mapsto 0$
+ V	Int → Int	+(-7) → -7
- v	Double → Double	-(-7) → 7
		$-(0.0) \mapsto -0.0$
v.toDouble	Int → Double	3.toDouble → 3.0

Comparison Operations

Operation	Static Type	Examples
$v_1 == v_2$ $v_1 != v_2$	$\tau \times \tau \longrightarrow Boolean$ $v_1 : \tau v_2 : \tau$	"x" == "x" \mapsto true false != false \mapsto false (-0.0) == 0.0 \mapsto true
$V_1 < V_2$ $V_1 <= V_2$ $V_1 >= V_2$ $V_1 >= V_2$	Int × Int → Boolean Double × Double → Boolean	$1 < 1 \mapsto false$ $5 > 4 \mapsto true$ Double.NegativeInfinity <= Double.NaN \mapsto false

Logical Operations

Operation	Static Type	Examples
$v_1 & v_2 \\ v_1 & v_2$	Boolean × Boolean → Boolean	true & true → true true & false → false false true → true
! v	Boolean → Boolean	! true → false ! false → true

Function Applications

Given a function definition

```
def fn(x<sub>0</sub>: T<sub>0</sub>, x<sub>1</sub>: T<sub>1</sub>, ..., x<sub>N</sub>: T<sub>N</sub>): T<sub>R</sub> = {
  expr<sub>body</sub>
}
```

we get a corresponding reduction rule:

$$fn(v_0, v_1, ..., v_N) \rightarrow \{ expr_{body}[x_0 \rightarrow v_0, x_1 \rightarrow v_1, ..., x_N \rightarrow v_N] \}$$

i.e., the function application reduces to the function body expression, but with a new rule for each formal parameter's symbol, reducing the symbol to the corresponding argument value from the application.

Function Application Example

```
def square(x: Double) = x * x

square(6.0) \rightarrow

6.0 * 6.0 \rightarrow

36.0
```

Conditional Expressions

Computing Conditional Expressions

We used a bit of hand-waiving when presenting if expressions

if (e1) e2 else e3

 According to the substitution model of computation, how do we compute the value of this expression?

Computing Conditional Expressions

if (e1) e2 else e3

- First we compute $e1 \rightarrow v1$, then $e2 \rightarrow v2$, then $e3 \rightarrow v3$
- If V1 is true then reduce to V2
- Otherwise reduce to V3

But Consider the Following Expression

if (false) 1/0 else 3

This expression should reduce to 3

New Rule for Conditional Expressions

- To reduce an if expression:
 - Reduce the test clause
 - If the test clause reduces to true, reduce the then clause
 - Otherwise, reduce the else clause

Short-Circuiting Logical Operations as If-Expressions

Short-circuiting operations can be rewritten as equivalent if-expressions:

- $x \& y \rightarrow if(x) y else false$
- $x \mid | y \mapsto if(x)$ true else y

Therefore, we use the same deferred-evaluation rule for the right-hand argument of short-circuiting operations as we use for an *if*-expression's *then/else* subexpressions.

Conditional and Short-Circuiting Operations

Rule	Static Type
if (true) $expr_1$ else $expr_2 \mapsto expr_1$ if (false) $expr_1$ else $expr_2 \mapsto expr_2$	Boolean $\times \tau \times \tau \longrightarrow \tau$ $expr_1: \tau expr_2: \tau$
true && $\exp r_2 \mapsto \exp r_2$ false && $\exp r_2 \mapsto \operatorname{false}$ true $\parallel \exp r_2 \mapsto \operatorname{true}$ false $\parallel \exp r_2 \mapsto \exp r_2$	Boolean × Boolean → Boolean

What are The Exceptional Events in Core Scala?

- · A "division by zero" error on Ints (but not Doubles)
- We run out of some finite resource
 - The computation never stops
 - The computation uses too much memory

Programming With Intention

Programming With Intention

- There is far too much broken software in the world...
- The number of mission critical domains affected by programming is increasing
 - Space exploration and satellites, defense, medical devices, automobiles, finance

Programming With Intention

- Static types help us reduce some errors by restricting the potential results of a computation
- We still need to defend against exceptional events
- And we need to defend against silent errors
 - Silent errors are actually our most insidious risk

Scala Comments

Scala supports Java-style comments:

```
/* Multi
Line
Comment */
/** Scala-doc-style
  * multiline comment
  */
// single line comment
```

Contract for Factorial

```
def factorial(n: Int): Int = {
  require(0 <= n & n <= 12)
  // ... implementation ...
} ensuring(result => result > 0)
```

Syntax and Typing of Contracts

```
\label{eq:def-fnName} \begin{subarray}{ll} def & fnName(arg_0: Type_0, ..., arg_k: Type_k): ReturnType &= \{ & require(expr) & \\ & expr & \\ & ensuring & (expr) & \\ \end{subarray}
```

- The static type of the expr in require(expr) is Boolean
- The static type of the expr in ensuring(expr) is
 ReturnType ⇒ Boolean

Unary Lambda Expressions for the Ensuring Clause

```
result => result == 1
result => 0.0 < result & result < 1.0
result => 0 > result | result > 10
```

- result => ... indicates a unary function of result.
- The static type of the argument *result* is inferred from the context of the *ensuring* clause; i.e., it's the ReturnType of the corresponding function's body expression.
- The lambda expression body must return a Boolean.

More Complex Contracts

```
def fnName(arg_0: Type_0, ..., arg_k: Type_k): ReturnType = {
        require(expr<sub>precondition<sub>0</sub></sub>)
         require(expr_{precondition_1})
         require(expr<sub>preconditionk</sub>)
         expr<sub>function body</sub>
} ensuring(expr<sub>postcondition®</sub>)
. ensuring(expr_{postcondition_1})
. ensuring(expr_{postcondition_k})
```