Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 3, 2019

Homework 0

Please follow these instructions for checking out your turnin repository as soon as

possible:

Follow the instructions under Homework Submission Guide at the Course Website

Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
Hello, world!

This submission is not for credit
We will let you know if we have not received your submission

You will be responsible for successfully submitting your hw_1 assignment using
turnin

Please bring problems to our attention as soon as possible

https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide
https://comp311.rice.edu/

Value Types in Core Scala

Int: -3,-2,-1,0, 1, 2, 3
Double: 1.414, 2.718, 3.14, oo
Boolean: false, true

String: “Hello, world!”

The Nature of Ints

Fixed Size Ints

Unlike the integers we might write on a sheet of paper,
the values of type Int are of a fixed size.

For every n: Int,

231 < n<23-1

Fixing the Size of Numbers
Has Many Benetfits

. The time needed to compute the application of an
operation on two numbers is bounded.

. The space needed to store a number is bounded.

. We can easily reuse the space used for one number to
store another.

But We Need to Concern
Ourselves with Overflow

. If we compute a value larger than 2°'-1, our

representation will “wrap around” (i.e., overflow):

2147483647 + 1 +— -2147483648

The Moral of Computing with
Ints

. If possible, determine the range of potential results of a
computation

. Ensure that this range is no larger than the range of
representable values of type Int

. Otherwise, include in your computation a check for
overflow

The Nature of Doubles

Scientific Notation

Numeric values in scientific computations can span
enormous ranges, from the very large to the very small

At the same time, scientific measurements are of
limited precision

“Scientific notation” was devised in order to efficiently
represent approximate values that span a large range

10

Scientific Notation

6.022 x 1023

exponent
v —~ €XP
mantissa base

Scientific Notation and
Efficient Computation

. We normalize the mantissa so that its value is at least 1 but

less than 10

. If we

. Set the number of digits in the mantissa to a fixed
precision, and

. Set the number of digits in the exponent to a fixed
precision

. Then all numbers in our notation are of a fixed size

12

Doubles

Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

Finite, nonzero numeric values can be expressed in
the form:

+ mx2¢

13

Doubles

. l<m<2>3-1

. -1022 < e < 971

For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision floating-point format

14

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Representations of Doubles

. Many quantities have more than one representation in

this format:

1024 x 2>

512 x 2°01

15

Distances Between Doubles

. The distance between adjacent values of type Double is

not constant
. The values are most dense near zero

. They grow sparser exponentially as one moves away
from zero

16

Operations and Rounding

. Arithmetic operations round to the closest
representable value

. Ties are broken by choosing the value with the
smaller absolute value

17

Overflow with Doubles

. Computations on Doubles that result in values larger

than the largest finite Double are represented with
special values:

Double.Positivelnfinity

Double.Negativelnfinity

18

Underflow with Doubles

. Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero Double
are represented with special values:

0.0 -0.0

19

Division By Zero

Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 — Double.Positivelnfinity

1.0 / -0.0 — Double.Negativelnfinity

20

Division By Zero

. As does division of an infinite value by a zero value:

Double.Positivelnfinity / 0.0 — Double.Positivelnfinity

21

Division By Zero

Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 — Double.NaN

-0.0 / 0.0 — Double.NaN

22

Doubles Break Common
Algebraic Properties

Addition is not associative:

(0.1 + 0.2) + 0.3 »
0.6000000000000001

0.1 + (0.2 + 0.3) »
0.6

23

Doubles Break Common
Algebraic Properties

. Equality is not reflexive:

Double.NaN != Double.NaN

. Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) »
30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 »
30.0

24

Morals of Floating Point
Computation

. Avoid floating point computation whenever you need to

compute precise numeric values (such as monetary
values)

. Use floating point values only when calculating with
inexact measurements over a range larger than can be
represented with precise arithmetic

25

Morals of Floating Point
Computation

. Try to bound the margin of error in your calculation
. Don’t test for equality directly
. Instead of writing:
X ==
. Write:

abs(x - y) <= tolerance

26

Defining Absolute Value

def abs(x: Double) = 1f (x >= 0) x else -X
What’s wrong here?

abs(-0.0) »

if (-0.0 >= 0) -0.0 else -(-0.0) »

if (true) -0.0 else -(-0.0) »

-0.0

27

Defining Absolute Value

def abs(x: Double) = 1f (x > 0) x else 0.0 - X
Does it work now?

abs(-0.0) »

if (-0.0 > 0) -0.0 else 0.0 - -0.0 »

if (false) -0.0 else 0.0 - -0.0 »

0.0 - -0.0

0.0

28

Review:
Computation by Reduction

Arithmetic Operations

Operation Static Type Examples

Vi + V, 5-1—14

V-V, Int x Int — Int 9/0m— L

v, v, Double x Double — Double 9.0/0.0 —
v,/ v, Double.Positivelnfinity

-(0) — 0

+ vV Int — Int +(-7) — -7

-V Double — Double -(-7) — 7

- (0.0) — -0.0

v.toDouble

Int — Double

3.toDouble — 3.0

30

Comparison Operations

Operation Static Type Examples
o B I "X" —— "X" —> true
Y " v2 Tt Bookan false != false — false
1=V it Yt (-0.0) == 0.0 — true
V<V, 1< 1+ false
V, <=V, Int x Int — Boolean 5>4 > true
V>V, Double x Double — Boolean |Double.Negativelnfinity

<= Double.NaN > false

31

Logical Operations

Operation Static Type Examples
V&Y true & true — true
\; v 2 Boolean x Boolean — Boolean| true & false — false
T2 false | true — true
! true — false
v Boolean — Boolean

! false — true

32

Function Applications

Given a function definition

def fn(xg: Ty, Xy Tq, w, Xy: Ty): Tr = {
eXprbody

}

we get a corresponding reduction rule:
fn(ve,Vy,m,Vy) » { €Xpryggy[XemVe, X12Vy,w, Xyl)

i.e., the function application reduces to the function body
expression, but with a new rule for each formal
parameter’s symbol, reducing the symbol to the
corresponding argument value from the application.

33

Function Application
Example

def square(x: Double) = x * X

) b

-

square(6.0
6.0 * 0.0
36.0

Conditional Expressions

35

Computing Conditional
Expressions

. We used a bit of hand-waiving when presenting 1T
expressions

1T (el) e2 else e3

. According to the substitution model of computation,
how do we compute the value of this expression?

36

Computing Conditional
Expressions

1T (el) e2 else e3

. First we compute €1 » V1 thene2 » V2, then e3
- V3

. If vl is true then reduce to v2

. Otherwise reduce to v3

37

But Consider the Following
Expression

1f (false) 1/0 else 3

This expression should reduce to 3

38

New Rule for Conditional
Expressions

. To reduce an if expression:

. Reduce the test clause

. If the test clause reduces to true, reduce the
then clause

. Otherwise, reduce the else clause

39

Short-Circuiting Logical
Operations as If-Expressions

Short-circuiting operations can be rewritten as equivalent
if-expressions:

- X &'y » 1T (X) y else false
« X ||y » 1f (x) true else vy

Therefore, we use the same deferred-evaluation rule for
the right-hand argument of short-circuiting operations as
we use for an if-expression’s then/else subexpressions.

40

Conditional and Short-
Circuiting Operations

Rule Static Type
if (true) expr, else expr, — expr, Boolean x t x 1 — 1
if (false) expr, else expr, — expr, expr;: T expr,: T

true && expr, — expr,
false && expr, +— false
Boolean x Boolean — Boolean
true || expr, — true
false || expr, — expr,

41

What are The Exceptional
Events in Core Scala?

. A “division by zero” error on Ints (but not Doubles)

. We run out of some finite resource

. The computation never stops

. The computation uses too much memory

42

Programming With
Intention

Programming With Intention

. There is far too much broken software in the world...

. The number of mission critical domains affected by
programming Is Increasing

. Space exploration and satellites, defense, medical
devices, automobiles, finance

44

Programming With Intention

. Static types help us reduce some errors by restricting
the potential results of a computation

. We still need to defend against exceptional events
. And we need to defend against silent errors

. Silent errors are actually our most insidious risk

45

Scala Comments

Scala supports Java-style comments:

/* Multi
Line
Comment */

/** Scala-doc-style
* multiline comment
*/

// single line comment

46

Contract for Factorial

def factorial(n: Int): Int = {
require(0 <= n & n <= 12)
// ... 1mplementation ...

} ensuring(result => result > 0)

47

Syntax and Typing of Contracts

def fnName(argy: Typey, .., argy: Type,): ReturnType = {
require(expr)
expr

} ensuring (expr)

* The static type of the exprin require(expr) is Boolean
* The static type of the exprin ensuring(expr) is

ReturnType = Boolean

48

Unary Lambda Expressions
for the Ensuring Clause

result => result ==
result => 0.0 < result & result < 1.0

result => 0 > result | result > 10

result => .. indicates a unary function of result.

The static type of the argument result is inferred from the
context of the ensuring clause; i.e., it’s the ReturnType of
the corresponding function’s body expression.

The [ambda expression body must return a Boolean.
49

More Complex Contracts

def fnName(argy: Typey, .., arg,: Type,): ReturnType = {
require(expryreconditions)
require(expryrecondition:)
require(expryreconditions)

eXp r.function_body

} ensu ring (eX Y rpos’ccondi’ciono)

. €nsuring (exp Iﬂpos’ccondi’cionl)

. ensuring(exp Mpostconditions)

50

