# Comp 311 <br> Functional Programming 

Nick Vrvilo, Two Sigma Investments Robert "Corky" Cartwright, Rice University

September 17, 2019

## Homework 1

- Please submit your homework via the SVN / turnin system, in a folder named hw_1
- The specific files to submit are defined in the description for each assignments
- For each section, please turn in only your final program resulting from completion of the section


# Please Restrict Your Homework Submission to Features Covered in Class 

## Current Core Scala Features

- (case) object
- (case) class
- val
- if /else
- match / case
- require, ensuring
- Int, Double, String
- Array[T],Tuples
- Arithmetic operators
- (In)equality operators
- Logical and / or
- assert
- $\lambda$-expressions (ensuring)
- Plus the stuff from today!


## Please Restrict Your Homework Submission to Features Covered in Class

This should be the only import statements you need:
import org.scalatest.
(or equivalent imports auto-generated by your IDE for your ScalaTest test class)

Methods and Operators

## Syntactic Sugar For Binary Methods

- We refer to methods that take one parameter (in addition to the receiver) as binary methods
case class Coordinate(x: Int, y: Int) \{ def magnitude() = $x * x+y^{*} y$
def add(that: Coordinate) $=$ Coordinate(x + that. $x, y+t h a t . y)$ \}


## Syntactic Sugar For Binary Methods

Coordinate(1,2).add(Coordinate(3,4))

$\mapsto$<br>Coordinate (4,6)

## Syntactic Sugar For Binary Methods

- We can elide the dot in method calls on binary methods
- We can also elide the enclosing parentheses around the sole argument


# Syntactic Sugar For Binary Methods 

Coordinate(1,2) add Coordinate(3,4)


## Operator Symbols

- Scala allows the use of operator symbols in method names
- In fact, operators are simply methods in Scala

$$
\begin{gathered}
1+2 \mapsto 3 \\
1 .+(2) \mapsto 3
\end{gathered}
$$

## Coordinate Custom +

case class Coordinate(x: Int, y: Int) \{ def magnitude() $=x^{*} x+y^{*} y$
def +(that: Coordinate) = Coordinate(x + that. $x, y+$ that. $y)$ \}

## Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4) $\mapsto$
Coordinate (4, 6)

## Requires Clauses on Class Constructors

case class Name(field1: Type1, ..., fieldN: TypeN) \{ require (boolean-expression)
\}

- Checked on every constructor call
- Because case class instances are immutable, this ensures the property holds for the lifetime of an instance


## Equals on Case Classes

- The equals method on a case class instance checks for structural equality with its argument:

$$
\text { Rational (4, 6).equals(Rational(4,6)) } \leftrightarrow
$$

true

## Equals on Case Classes

- Note that equals is a binary method, and so we can also write this expression as:

Rational(4,6) equals Rational(4,6) $\mapsto$

true

## Equals on Case Classes

- The == operator in Scala, unlike Java, delegates to the equals method:

$$
\text { Rational }(4,6)==\text { Rational }(4,6) \leftrightarrow
$$

true

## Equals on Case Classes

- Of course, the built in equals method does not check for mathematical equality:

$$
\begin{aligned}
\text { Rational }(4,6) & ==\operatorname{Rational}(2,3) \rightarrow \\
& \text { false }
\end{aligned}
$$

## Equals on Case Classes

- Why is this definition of equality acceptable on case classes?
- What other definition is available to us?

$$
\begin{gathered}
\text { Rational }(4,6)==\operatorname{Rational}(2,3) \mapsto \\
\text { false }
\end{gathered}
$$

# Calling and Defining Parameterless Methods Without Parentheses 

$$
\text { def toString() = \{ ... \} }
$$

vs.

$$
\text { def toString }=\{\text {... }\}
$$

# Calling and Defining Parameterless Methods Without Parentheses 

Rational(4,6).toString()

VS.
Rational(4,6).toString

## The Uniform Access Principle

- Client code should not be affected by whether an attribute is defined as a field or a method
- Only applies to pure (side-effect free) methods
- Can be strange even for some pure methods (what are some examples?)


## Abstract Datatypes

## Abstract Datatypes

- Often, we wish to abstract over a collection of compound datatypes that share common properties
- For example, we might wish to define an abstract datatype for shapes, with separate case classes for each of several shapes
- For this purpose, we define an abstract class and use subclassing


## Abstract Datatypes

abstract class Shape<br>case class Circle(radius: Double) extends Shape<br>case class Square(side: Double) extends Shape<br>case class Rectangle(height: Double, width: Double) extends Shape

## Abstract Methods

abstract class Shape \{ def area: Double
\}
case class Circle(radius: Double) extends Shape \{ val pi = 3.14 def area $=$ pi $*$ radius $*$ radius
\}
case class Square(side: Double) extends Shape \{ def area $=$ side $*$ side
\}
case class Rectangle(length: Double, width: Double) extends Shape \{ def area = length * width \}

## One Method

## to Rule Them All

```
abstract class Shape {
    val pi = 3.14
    def area: Double = this match {
        case Circle(radius) => pi * radius * radius
        case Square(side) => side * side
        case Rectangle(width, height) => width * height
    }
}
```


## Applying a Class Method Revisited

- To reduce the application of a method:
C(v1, ..., vk).m(arg1, ..., argN)
- Reduce the receiver and arguments, left to right
- Reduce the body of $m$, replacing constructor parameters with constructor arguments and method parameters with method arguments


## Applying a Class Method Revisited

- To reduce the application of a method:
C(v1, ..., vk).m(arg1, ..., argN)
- Reduce the receiver and arguments, left to right
- Find the body of $m$ in $\mathbf{C}$ and reduce to that, replacing constructor parameters with constructor arguments and method parameters with method arguments


## The Body of $m$

- To find the body of method $m$ in type $C$ :
- Find the definition of $m$ in the body of $C$, if it exists
- Otherwise, find the body of m in the immediate superclass of C


# Abstract Datatype Example: Option 

## The Option Class

- The Option class is a collection of zero or one items.
- The parameterized type Option [T] denotes a collection of at most one object with type T .
- The Some [T] subclass represents the non-empty case.
- The None object represents the empty case.


## Option Implementation

```
abstract class Option[T] {
    def get: T
    def isEmpty: Boolean
    def nonEmpty: Boolean
}
case class Some[T](x: T) extends Option[T] {
    def get = x
    def isEmpty = false
    def nonEmpty = true
}
case object None extends Option[Nothing] {
    def get: T =
        throw new java.util.NoSuchElementException()
    def isEmpty = true
    def nonEmpty = false
}

\title{
Design Templates for Abstract Datatypes
}

\section*{Case 1}

We Expect Few New Functions But Many New Variants

\section*{Abstract Methods}
abstract class Shape \{ def area: Double
\}
case class Circle(radius: Double) extends Shape \{ val pi = 3.14 def area \(=\) pi \(*\) radius \(*\) radius
\}
case class Square(side: Double) extends Shape \{ def area \(=\) side \(*\) side
\}
case class Rectangle(length: Double, width: Double) extends Shape \{ def area = length * width \}

\section*{Case Two}

\section*{We Expect Many New Functions But Few New Variants}

\section*{One (Pattern Matching) Method to Rule Them All}
```

abstract class Shape {
val pi = 3.14
def area: Double = this match {
case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height
}
}

```

\section*{Case 2: We Expect Many New Functions But Few New Variants}
- This is a case that traditional functional programming handles well
- Classic example domains: Compilers, theorem provers, numeric algorithms, machine learning
- Declare a top-level function with cases for each data variant
a.k.a., The Visitor Pattern

\section*{We Can Define Arbitrary Functions Without Modifying Data Definitions}
```

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case _ => shapel
}
}

```

\section*{But A New Data Variant Requires Us To Modify All Functions Over the Datatype}
```

val pi = 3.14
def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y
case Triangle(b,h) => b*h/2
}
}

```

\section*{But A New Data Variant Requires Us To Modify All Functions Over the Datatype}
```

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)
case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)
case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)
// plus all the cases for Triangle on the left (omitted)
case _ => shape1

## Sealed Data Types

- Adding the sealed keyword to an abstract type indicates that all subclasses of that type are declared in the current compilation unit.
- Provides extra information to the compiler for optimizations and diagnostics

sealed abstract class Shape case class Square(length: Double) extends Shape case class Circle(radius: Double) extends Shape case class Triangle(base: Double, height: Double) extends Shape

## Sealed Data Types

```
object Math {
    val pi = 3.141592653589793
}
```

sealed abstract class Shape \{
def area: Double = this match \{
// case Square(x) => x * x
case Circle(r) => Math.pi * r * r
case Triangle(b, h) => 0.5 * b * h
\}
\}
warning: match may not be exhaustive.
It would fail on the following input: Square(_)
def area: Double = this match \{

# Recursively Defined Datatypes 

## Recursively Defined Datatypes

- Case classes allow us to combine multiple pieces of a data into a single object
- But sometimes we don't know how many things we wish to combine
- We can use recursion to define datatypes of unbounded size
- This case corresponds to the Composite Design Pattern


# Backus-Naur Form For Lists of Ints 

$$
\begin{aligned}
\text { List }: & :=\text { Empty } \\
& \mid \text { Cons(Int,List) }
\end{aligned}
$$

## Examples of Lists

## Empty

Cons(3, Empty)
Cons(3, Cons(1, Empty))
Cons(3, Cons(1, Cons(4, Empty)))

## Defining Lists With Scala Case Classes

abstract class List case object Empty extends List case class Cons(head: Int, tail: List) extends List

## Where Do We Put Functions Over Lists?

- We do not expect to define new subtypes of lists
- We do expect to define many new functions over lists
- Similar to our Case Two Design Template for Abstract Datatypes
- Thus, we will start with our pattern matching template


## An Example Function for Lists

```
def containsZero(xs: List): Boolean = {
    xs match {
            case Empty => false
            case Cons(n, ys) => {
            if (n == 0) true
            else containsZero(ys)
            }
    }
}
```


## An Example Function for Lists

def containsZero(xs: List): Boolean = \{ xs match \{
case Empty => false case Cons(n, ys) => ( $\mathrm{n}==0$ ) || containsZero(ys) \}
\}

# Generalizing to Our First Template Function for Lists 

```
def ourFunction(xs: List): Boolean = {
    xs match {
        case Empty => ...
        case Cons(n, ys) => ... n ... ourFunction(ys) ...
        }
}
```


## Generalizing to Our First Template Function for Lists

```
def ourFunction(xs: List): Boolean = {
    xs match {
        case Empty => ... 
}
```

We need to determine our base case

## Generalizing to Our First Template Function for Lists

```
def ourFunction(xs: List): Boolean = {
```

    xs match \{
    case Empty => ...
    case Cons(n, ys) => ... n ... ourFunction(ys) ...
    \}


We must determine how to combine these values

## Generalizing to Our First Template Function for Lists

```
def ourFunction(xs: List): Boolean = {
    xs match {
        case Empty => ...
        case Cons(n, ys) => ... n ... ourFunction(ys) ...
    }
}
```

This template is an example of natural recursion or structural recursion: We recursively decompose and then recombine a computation according to the natural structure of the data.

## Filling in the Template

def containsZero(xs: List): Boolean = \{
xs match \{
case Empty => false
case Cons(n, ys $\quad$ => ( $\mathrm{n}==0$ ) || containsZero(ys) \}
\}
Here the base case is easy:
An empty list does not contain zero (or anything else)

## Filling in the Template

def containsZero(xs: List): Boolean = \{ xs match \{
case Empty => false case $\operatorname{Cons}(n, y s)=>(n==0)| |$ containsZero $(y s)$

We break into cases based on the pieces from match: Either our first element $n$ is zero or the answer lies with the rest of the list

# Another Example: How Many Elements? 

```
def length(xs: List): Int = {
    xs match {
            case Empty => 0
            case Cons(n, ys) => 1 + length(ys)
    }
}
```


# Another Example: <br> The Sum of the Elements 

```
def sum(xs: List): Int = {
    xs match {
        case Empty => 0
        case Cons(n, ys) => n + sum(ys)
    }
}
```


# Another Example: <br> <br> The Product of the Elements 

 <br> <br> The Product of the Elements}

```
def product(xs: List): Int = {
    xs match {
            case Empty => 1
            case Cons(n, ys) => n * product(ys)
    }
}
```


## Converting Hours to Seconds

Problem Statement: Given a list of times measured in hours, we want to construct a list of corresponding times measured in seconds

## Converting Hours to Seconds

```
def hoursToSeconds(xs: List): List = {
    xs match {
        case Empty => Empty
        case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))
        }
}
def seconds(hours: Int) = 3600 * hours
```


## Generalizing to a Template

def ourFunction(xs: List): List = \{
xs match \{
case Empty => ...
case Cons(n, ys) => Cons(...n...,
\}
\}

Really, this is the same template as before, but now Cons is our combining operation

## The Natural Numbers

Nat ::= 0
| Next(Nat)

## The Natural Numbers

$$
\begin{aligned}
\text { Nat }: & :=0 \\
& \mid \text { Next(Nat) }
\end{aligned}
$$

Here we are between Cases One and Two for Abstract Datatypes:

- No new variants expected
- Many new functions expected
- But some basic functions are intrinsic to the type


# Defining The Natural Numbers in Scala 

abstract class Nat case object Zero extends Nat case class Next(n: Nat) extends Nat

# Defining The Natural Numbers in Scala 

abstract class Nat \{ def +(n: Nat): Nat def *(n: Nat): Nat \}

## Defining The Natural Numbers

## in Scala

case object Zero extends Nat \{ def +(n: Nat) = n def *(n: Nat) = Zero
\}
case class Next(n: Nat) extends Nat \{ def +(m: Nat) = Next(n + m) def *(m: Nat) $=m+(n * m)$
\}

## Defining The Natural Numbers

## in Scala

case object Zero extends Nat \{ $\operatorname{def}+(n:$ Nat $)=n$ $\operatorname{def} *(\mathrm{n}:$ Nat $)=$ Zero Again we have natural recursion: base case, recursion, combination
case class Next(n: Nat) extends Nat \{ def +(m: Nat) $=$ Next ( $n+m$ ) def *(m: Nat) $=m+(n * m)$
\}

## Example Reduction $(3+2)$

Next(Next(Next(Zero)) + Next(Next(Zero)) $\quad \mapsto$ Next(Next(Next(Zero)) + Next(Next(Zero))) $\mapsto$ Next (Next(Next(Zero) + Next(Next(Zero)))) $\mapsto$ Next (Next(Next(Zero + Next(Next(Zero))))) $\mapsto$ Next (Next(Next(Next(Next(Zero)))))

## Factorial

def factorial(n: Nat): Nat = \{ n match \{
case Zero => Next(Zero) case Next(m) => n * factorial(m) \} \}

# Transferring The Pattern To Ints 

def factorial(n: Int): Int = \{ require ( n >= 0)
if ( $\mathrm{n}==0$ ) 1
else n * factorial(n - 1)
\} ensuring (_ > 0)

