
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 17, 2019

Homework 1

• Please submit your homework via the SVN / turnin
system, in a folder named hw_1

• The specific files to submit are defined in the
description for each assignments

• For each section, please turn in only your final program
resulting from completion of the section

2

Please Restrict Your Homework Submission
to Features Covered in Class

3

Current Core Scala Features
• (case) object

• (case) class

• val

• if / else

• match / case

• require, ensuring

• Int, Double, String

• Array[T], Tuples

• Arithmetic operators

• (In)equality operators

• Logical and / or

• assert

• λ-expressions (ensuring)

• Plus the stuff from today!

4

Please Restrict Your Homework Submission
to Features Covered in Class

This should be the only import statements you need:

import org.scalatest._

(or equivalent imports auto-generated by your IDE for
your ScalaTest test class)

5

Methods and Operators

6

Syntactic Sugar For Binary
Methods

• We refer to methods that take one parameter (in
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def add(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

}

7

Syntactic Sugar For Binary
Methods

Coordinate(1,2).add(Coordinate(3,4))

↦
Coordinate(4,6)

8

Syntactic Sugar For Binary
Methods

• We can elide the dot in method calls on binary methods

• We can also elide the enclosing parentheses around the
sole argument

9

Syntactic Sugar For Binary
Methods

Coordinate(1,2) add Coordinate(3,4)

↦
Coordinate(4,6)

10

Operator Symbols

• Scala allows the use of operator symbols in method names

• In fact, operators are simply methods in Scala

1 + 2 ↦ 3

1.+(2) ↦ 3

11

Coordinate Custom +

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def +(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

}

12

Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4)

↦
Coordinate(4,6)

13

Requires Clauses on Class
Constructors

case class Name(field1: Type1, …, fieldN: TypeN) {

require (boolean-expression)
...

}

• Checked on every constructor call

• Because case class instances are immutable, this ensures the
property holds for the lifetime of an instance

14

Equals on Case Classes

• The equals method on a case class instance checks for
structural equality with its argument:

Rational(4,6).equals(Rational(4,6)) ↦

true

15

Equals on Case Classes

• Note that equals is a binary method, and so we can also
write this expression as:

Rational(4,6) equals Rational(4,6) ↦

true

16

Equals on Case Classes

• The == operator in Scala, unlike Java, delegates to the
equals method:

Rational(4,6) == Rational(4,6) ↦

true

17

Equals on Case Classes

• Of course, the built in equals method does not check for
mathematical equality:

Rational(4,6) == Rational(2,3) ↦

false

18

Equals on Case Classes

• Why is this definition of equality acceptable on case
classes?

• What other definition is available to us?

Rational(4,6) == Rational(2,3) ↦

false

19

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { … }

vs.

def toString = { … }

20

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()

vs.

Rational(4,6).toString

21

The Uniform Access Principle

• Client code should not be affected by whether an
attribute is defined as a field or a method

• Only applies to pure (side-effect free) methods

• Can be strange even for some pure methods (what
are some examples?)

22

Abstract Datatypes

23

Abstract Datatypes

• Often, we wish to abstract over a collection of
compound datatypes that share common properties

• For example, we might wish to define an abstract
datatype for shapes, with separate case classes for each
of several shapes

• For this purpose, we define an abstract class and use
subclassing

24

Abstract Datatypes

abstract class Shape
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape

25

abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val pi = 3.14
def area = pi * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width
}

Abstract Methods

26

abstract class Shape {
val pi = 3.14
def area: Double = this match {

case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height

}
}

One Method
to Rule Them All

27

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor
parameters with constructor arguments and method
parameters with method arguments

28

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Find the body of m in C and reduce to that,
replacing constructor parameters with constructor
arguments and method parameters with method
arguments

29

The Body of m

• To find the body of method m in type C:

• Find the definition of m in the body of C, if it exists

• Otherwise, find the body of m in the immediate
superclass of C

30

Abstract Datatype
Example: Option

31

The Option Class

• The Option class is a collection of zero or one items.

• The parameterized type Option[T] denotes a collection
of at most one object with type T.

• The Some[T] subclass represents the non-empty case.

• The None object represents the empty case.

32

abstract class Option[T] {
def get: T
def isEmpty: Boolean
def nonEmpty: Boolean

}

case class Some[T](x: T) extends Option[T] {
def get = x
def isEmpty = false
def nonEmpty = true

}

case object None extends Option[Nothing] {
def get: T =
throw new java.util.NoSuchElementException()

def isEmpty = true
def nonEmpty = false

}

Option Implementation

33

Design Templates for
Abstract Datatypes

34

Case 1
We Expect Few New Functions

But Many New Variants

35

abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val pi = 3.14
def area = pi * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width
}

Abstract Methods

36

Case Two
We Expect Many New Functions

But Few New Variants

37

abstract class Shape {
val pi = 3.14
def area: Double = this match {

case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height

}
}

One (Pattern Matching)
Method to Rule Them All

38

Case 2: We Expect Many New
Functions But Few New Variants

• This is a case that traditional functional programming
handles well

• Classic example domains: Compilers, theorem provers,
numeric algorithms, machine learning

• Declare a top-level function with cases for each data
variant

a.k.a., The Visitor Pattern

39

We Can Define Arbitrary Functions
Without Modifying Data Definitions

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case _ => shape1
}

}

40

But A New Data Variant Requires Us To
Modify All Functions Over the Datatype

val pi = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y
case Triangle(b,h) => b*h/2

}
}

41

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {

case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

// plus all the cases for Triangle on the left (omitted)
case _ => shape1

}
}

But A New Data Variant Requires Us To
Modify All Functions Over the Datatype

42

sealed abstract class Shape
case class Square(length: Double) extends Shape
case class Circle(radius: Double) extends Shape
case class Triangle(base: Double, height: Double)

extends Shape

Sealed Data Types

43

• Adding the sealed keyword to an abstract type
indicates that all subclasses of that type are declared
in the current compilation unit.

• Provides extra information to the compiler for
optimizations and diagnostics

object Math {
val pi = 3.141592653589793

}

sealed abstract class Shape {
def area: Double = this match {

// case Square(x) => x * x
case Circle(r) => Math.pi * r * r
case Triangle(b, h) => 0.5 * b * h

}
}

Sealed Data Types

44

warning: match may not be exhaustive.
It would fail on the following input: Square(_)

def area: Double = this match {

Recursively Defined
Datatypes

45

Recursively Defined Datatypes

• Case classes allow us to combine multiple pieces of a
data into a single object

• But sometimes we don’t know how many things we
wish to combine

• We can use recursion to define datatypes of unbounded
size

• This case corresponds to the Composite Design Pattern

46

Backus-Naur Form
For Lists of Ints

List ::= Empty
| Cons(Int,List)

47

Examples of Lists

Empty
Cons(3, Empty)

Cons(3, Cons(1, Empty))
Cons(3, Cons(1, Cons(4, Empty)))

48

Defining Lists With Scala Case
Classes

abstract class List
case object Empty extends List
case class Cons(head: Int, tail: List) extends List

49

Where Do We Put Functions
Over Lists?

• We do not expect to define new subtypes of lists

• We do expect to define many new functions over lists

• Similar to our Case Two Design Template for Abstract
Datatypes

• Thus, we will start with our pattern matching template

50

An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => {
if (n == 0) true
else containsZero(ys)

}
}

}

51

An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

52

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

53

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We need to determine our base case

54

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We must determine how to combine these values

55

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

This template is an example of natural recursion
or structural recursion: We recursively decompose
and then recombine a computation according to
the natural structure of the data.

56

Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

Here the base case is easy:
An empty list does not contain zero

(or anything else)
57

Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

We break into cases based on the pieces
from match: Either our first element n is zero
or the answer lies with the rest of the list

58

Another Example:
How Many Elements?

def length(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => 1 + length(ys)

}
}

59

Another Example:
The Sum of the Elements

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => n + sum(ys)

}
}

60

Another Example:
The Product of the Elements

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(n, ys) => n * product(ys)

}
}

61

Converting Hours to Seconds

Problem Statement: Given a list of times measured in
hours, we want to construct a list of corresponding times
measured in seconds

62

Converting Hours to Seconds

def hoursToSeconds(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))

}
}

def seconds(hours: Int) = 3600 * hours

63

Generalizing to a Template

def ourFunction(xs: List): List = {
xs match {
case Empty => …
case Cons(n, ys) => Cons(…n…,

ourFunction(ys))
}

}

Really, this is the same template as
before, but now Cons is our combining

operation

64

The Natural Numbers

Nat ::= 0
| Next(Nat)

65

The Natural Numbers

Nat ::= 0
| Next(Nat)

Here we are between Cases One and Two for Abstract
Datatypes:

• No new variants expected
• Many new functions expected
• But some basic functions are intrinsic to the type

66

Defining The Natural Numbers
in Scala

abstract class Nat
case object Zero extends Nat
case class Next(n: Nat) extends Nat

67

Defining The Natural Numbers
in Scala

abstract class Nat {
def +(n: Nat): Nat
def *(n: Nat): Nat

}

68

case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers
in Scala

69

case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers
in Scala

Again we have natural
recursion: base case,

recursion, combination

70

Example Reduction
(3 + 2)

Next(Next(Next(Zero)) + Next(Next(Zero)) ↦
Next(Next(Next(Zero)) + Next(Next(Zero))) ↦
Next(Next(Next(Zero) + Next(Next(Zero)))) ↦
Next(Next(Next(Zero + Next(Next(Zero))))) ↦

Next(Next(Next(Next(Next(Zero)))))

71

Factorial

def factorial(n: Nat): Nat = {
n match {
case Zero => Next(Zero)
case Next(m) => n * factorial(m)

}
}

72

Transferring The Pattern
To Ints

def factorial(n: Int): Int = {
require (n >= 0)

if (n == 0) 1
else n * factorial(n - 1)

} ensuring (_ > 0)

73

