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Homework 1

• Please submit your homework via the SVN / turnin
system, in a folder named hw_1

• The specific files to submit are defined in the 
description for each assignments

• For each section, please turn in only your final program 
resulting from completion of the section
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Please Restrict Your Homework Submission 
to Features Covered in Class
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Current Core Scala Features
• (case) object

• (case) class

• val

• if / else

• match / case

• require, ensuring

• Int, Double, String

• Array[T], Tuples

• Arithmetic operators

• (In)equality operators

• Logical and / or

• assert

• λ-expressions (ensuring)

• Plus the stuff from today!
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Please Restrict Your Homework Submission 
to Features Covered in Class

This should be the only import statements you need:

import org.scalatest._

(or equivalent imports auto-generated by your IDE for 
your ScalaTest test class)

5



Methods and Operators
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Syntactic Sugar For Binary 
Methods

• We refer to methods that take one parameter (in 
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def add(that: Coordinate) = 
Coordinate(x + that.x, y + that.y)

}
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Syntactic Sugar For Binary 
Methods

Coordinate(1,2).add(Coordinate(3,4))

↦
Coordinate(4,6)
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Syntactic Sugar For Binary 
Methods

• We can elide the dot in method calls on binary methods

• We can also elide the enclosing parentheses around the 
sole argument
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Syntactic Sugar For Binary 
Methods

Coordinate(1,2) add Coordinate(3,4)

↦
Coordinate(4,6)
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Operator Symbols

• Scala allows the use of operator symbols in method names

• In fact, operators are simply methods in Scala

1 + 2 ↦ 3

1.+(2) ↦ 3
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Coordinate Custom +

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def +(that: Coordinate) = 
Coordinate(x + that.x, y + that.y)

}
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Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4)

↦
Coordinate(4,6)
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Requires Clauses on Class 
Constructors

case class Name(field1: Type1, …, fieldN: TypeN) {

require (boolean-expression)
...

}

• Checked on every constructor call

• Because case class instances are immutable, this ensures the 
property holds for the lifetime of an instance
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Equals on Case Classes

• The equals method on a case class instance checks for 
structural equality with its argument:

Rational(4,6).equals(Rational(4,6)) ↦

true
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Equals on Case Classes

• Note that equals is a binary method, and so we can also 
write this expression as:

Rational(4,6) equals Rational(4,6) ↦

true
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Equals on Case Classes

• The == operator in Scala, unlike Java, delegates to the 
equals method:

Rational(4,6) == Rational(4,6) ↦

true
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Equals on Case Classes

• Of course, the built in equals method does not check for 
mathematical equality:

Rational(4,6) == Rational(2,3) ↦

false
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Equals on Case Classes

• Why is this definition of equality acceptable on case 
classes?

• What other definition is available to us?

Rational(4,6) == Rational(2,3) ↦

false
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Calling and Defining Parameterless 
Methods Without Parentheses

def toString() = { … }

vs.

def toString = { … }
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Calling and Defining Parameterless 
Methods Without Parentheses

Rational(4,6).toString()

vs.

Rational(4,6).toString
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The Uniform Access Principle

• Client code should not be affected by whether an 
attribute is defined as a field or a method

• Only applies to pure (side-effect free) methods

• Can be strange even for some pure methods (what 
are some examples?)
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Abstract Datatypes
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Abstract Datatypes

• Often, we wish to abstract over a collection of 
compound datatypes that share common properties

• For example, we might wish to define an abstract 
datatype for shapes, with separate case classes for each 
of several shapes

• For this purpose, we define an abstract class and use 
subclassing
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Abstract Datatypes

abstract class Shape 
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape
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abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val pi = 3.14
def area = pi * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width
}

Abstract Methods
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abstract class Shape {
val pi = 3.14
def area: Double = this match {

case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height

}
}

One Method
to Rule Them All

27



Applying a Class Method 
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor 
parameters with constructor arguments and method 
parameters with method arguments
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Applying a Class Method 
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Find the body of m in C and reduce to that,
replacing constructor parameters with constructor 
arguments and method parameters with method 
arguments
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The Body of m

• To find the body of method m in type C:

• Find the definition of m in the body of C, if it exists

• Otherwise, find the body of m in the immediate 
superclass of C
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Abstract Datatype 
Example: Option
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The Option Class

• The Option class is a collection of zero or one items.

• The parameterized type Option[T] denotes a collection 
of at most one object with type T.

• The Some[T] subclass represents the non-empty case.

• The None object represents the empty case.

32



abstract class Option[T] {
def get: T
def isEmpty: Boolean
def nonEmpty: Boolean

}

case class Some[T](x: T) extends Option[T] {
def get = x
def isEmpty = false
def nonEmpty = true

}

case object None extends Option[Nothing] {
def get: T =
throw new java.util.NoSuchElementException()

def isEmpty = true
def nonEmpty = false

}

Option Implementation
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Design Templates for 
Abstract Datatypes
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Case 1 
We Expect Few New Functions 

But Many New Variants 
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abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val pi = 3.14
def area = pi * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width
}

Abstract Methods
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Case Two 
We Expect Many New Functions 

But Few New Variants 
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abstract class Shape {
val pi = 3.14
def area: Double = this match {

case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height

}
}

One (Pattern Matching)
Method to Rule Them All
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Case 2: We Expect Many New 
Functions But Few New Variants 

• This is a case that traditional functional programming 
handles well

• Classic example domains: Compilers, theorem provers, 
numeric algorithms, machine learning

• Declare a top-level function with cases for each data 
variant

a.k.a., The Visitor Pattern
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We Can Define Arbitrary Functions 
Without Modifying Data Definitions

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case _ => shape1
}

}
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But A New Data Variant Requires Us To 
Modify All Functions Over the Datatype

val pi = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y
case Triangle(b,h) => b*h/2

}
}
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def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {

case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

// plus all the cases for Triangle on the left (omitted)
case _ => shape1

}
}

But A New Data Variant Requires Us To 
Modify All Functions Over the Datatype
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sealed abstract class Shape
case class Square(length: Double) extends Shape
case class Circle(radius: Double) extends Shape
case class Triangle(base: Double, height: Double)

extends Shape

Sealed Data Types
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• Adding the sealed keyword to an abstract type 
indicates that all subclasses of that type are declared 
in the current compilation unit.

• Provides extra information to the compiler for 
optimizations and diagnostics



object Math {
val pi = 3.141592653589793

}

sealed abstract class Shape {  
def area: Double = this match {

// case Square(x) => x * x
case Circle(r) => Math.pi * r * r
case Triangle(b, h) => 0.5 * b * h

}
}

Sealed Data Types
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warning: match may not be exhaustive.
It would fail on the following input: Square(_)

def area: Double = this match {



Recursively Defined 
Datatypes
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Recursively Defined Datatypes

• Case classes allow us to combine multiple pieces of a 
data into a single object

• But sometimes we don’t know how many things we 
wish to combine

• We can use recursion to define datatypes of unbounded 
size

• This case corresponds to the Composite Design Pattern
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Backus-Naur Form
For Lists of Ints

List ::= Empty
| Cons(Int,List)
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Examples of Lists

Empty
Cons(3, Empty)

Cons(3, Cons(1, Empty))
Cons(3, Cons(1, Cons(4, Empty)))
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Defining Lists With Scala Case 
Classes

abstract class List
case object Empty extends List
case class Cons(head: Int, tail: List) extends List
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Where Do We Put Functions 
Over Lists?

• We do not expect to define new subtypes of lists

• We do expect to define many new functions over lists

• Similar to our Case Two Design Template for Abstract 
Datatypes

• Thus, we will start with our pattern matching template
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An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => {
if (n == 0) true
else containsZero(ys)

}
}

}
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An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}
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Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}
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Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We need to determine our base case
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Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We must determine how to combine these values
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Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

This template is an example of natural recursion
or structural recursion: We recursively decompose
and then recombine a computation according to 
the natural structure of the data.
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Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

Here the base case is easy: 
An empty list does not contain zero

(or anything else)
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Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

We break into cases based on the pieces
from match: Either our first element n is zero
or the answer lies with the rest of the list
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Another Example: 
How Many Elements?

def length(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => 1 + length(ys)

}
}
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Another Example: 
The Sum of the Elements

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => n + sum(ys)

}
}
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Another Example: 
The Product of the Elements

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(n, ys) => n * product(ys)

}
}
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Converting Hours to Seconds

Problem Statement: Given a list of times measured in 
hours, we want to construct a list of corresponding times 
measured in seconds
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Converting Hours to Seconds

def hoursToSeconds(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))

}
}

def seconds(hours: Int) = 3600 * hours
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Generalizing to a Template

def ourFunction(xs: List): List = {
xs match {
case Empty => …
case Cons(n, ys) => Cons(…n…, 

ourFunction(ys))
}

}

Really, this is the same template as
before, but now Cons is our combining

operation
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The Natural Numbers

Nat ::= 0
| Next(Nat)
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The Natural Numbers

Nat ::= 0
| Next(Nat)

Here we are between Cases One and Two for Abstract
Datatypes:

• No new variants expected
• Many new functions expected
• But some basic functions are intrinsic to the type
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Defining The Natural Numbers 
in Scala

abstract class Nat
case object Zero extends Nat
case class Next(n: Nat) extends Nat
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Defining The Natural Numbers 
in Scala

abstract class Nat {
def +(n: Nat): Nat
def *(n: Nat): Nat

}
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case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers 
in Scala
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case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers 
in Scala

Again we have natural 
recursion: base case, 

recursion, combination
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Example Reduction
(3 + 2)

Next(Next(Next(Zero)) + Next(Next(Zero))  ↦
Next(Next(Next(Zero)) + Next(Next(Zero))) ↦
Next(Next(Next(Zero) + Next(Next(Zero)))) ↦
Next(Next(Next(Zero + Next(Next(Zero))))) ↦

Next(Next(Next(Next(Next(Zero)))))
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Factorial

def factorial(n: Nat): Nat = {
n match {
case Zero => Next(Zero)
case Next(m) => n * factorial(m)

}
}
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Transferring The Pattern 
To Ints

def factorial(n: Int): Int = {
require (n >= 0)

if (n == 0) 1
else n * factorial(n - 1)

} ensuring (_ > 0)
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