Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 3, 2017

Covariance and Append

. The problem with our original declaration of append
was that it was not general enough:

. There is no reason to require that we always append
lists of identical type

. Really, we can append a L1st[S] for any supertype
of our L1st|[T]

. The result will be of type L1st[S]

Lower Bounds on Type
Parameters

. Thus far, we have allowed type parameters to include
upper bounds:
P T <: S

. They can also include lower bounds:

T >: U

. Or they can include both:

T >: S <: U

Parametric Functions

. Just as we can add type parameters to a class
definition, we can also add them to a function
definition

. The type parameters are in scope in the header and
body of the function

Covariance and Append

abstract class List[+T] {
def ++[S >: T](ys: List[S]): List[S]
}

case object Empty extends List[Nothing] {
def ++[S](ys: List[S]) = ys
}

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def ++[S >: T](ys: List[S]) = Cons(head, tail ++ ys)
}

Map Revisited

abstract class List[+T] {

aef map[U](f: T => U): List[U]
}

Why is this occurrence of T acceptable?

We Consider Specific
Instantiations

abstract class List[Any] {

aef map[U](f: Any => U): List[U]

}
abstract class List[String] {

def map[U](f: String => U): List[U]
} /

Then List[String] is an acceptable subtype of List[Any]
provided that (String => U) >: (Any => U)
which requires that String <: Any.

Generalizing Our Rules

. In our example, type parameter T occurs as the parameter
of an arrow type:

. (String => U) >: (Any => U) in E provided:
- String <: AnyinE
- U <: UinE

. Sosubtype L1st[String] <: List[Any]is
permitted

To Check Variance, We Annotate
Each Type Position With A Polarity

. Recursively descend a class definition:
. At top level, all positions are positive
. Polarity is flipped at method parameter positions

. Polarity is flipped at method type parameter
positions

. Polarity is flipped at arrow type parameter positions

Annotating Polarity

abstract class List[+T] {
def ++[S >: T*](ys: List[S]): List[S"]
def map[U](f: T+ => U-): List[U*]

}

We Generalize Our Rules for
Checking Variance As Follows

. Covariant type parameters (declared with +) are
allowed to occur only in positive locations

. Type parameters with no annotation are allowed to
be used in all locations

Contravariance

. In general, we say that a parametric type C is
contravariant with respect to its type parameter S if:

S <: T1in E
implies
C[T] <: C[S] 1n E

. We must be careful that such relationships do not
break the soundness of our type system

Contravariance

. Syntactically, contravariant type parameter

declarations are annotated with a minus sign:

case class F[-A,+B]

To Check Variance, We Annotate
Each Type Location With A Polarity

. Recursively descend a class definition:

. At top level, all locations are positive
Polarity is flipped at method parameter positions
Polarity is flipped at method type parameter positions
Polarity is flipped at arrow type parameter positions

Polarity is flipped at positions of contravariant type
parameters

Annotating Polarity

abstract class List[+T] {
def ++[S >: T*](ys: List[S]): List[S"]
def map[U](f: T+ => U-): List[U*]

}

We Generalize Our Rules for
Checking Variance As Follows

. Covariant type parameters (declared with +) are
allowed to occur only in positive locations

. Type parameters with no annotation are allowed to
be used in all locations

. Contravariant type parameters are allowed to occur
only in negative locations

An Example of How We Might Use
Contravariant Type Parameters

abstract class Functionl[-S,+T] {
def apply(x:S): T
}

Map Revisited

case object Empty extends List[Nothing] {

def map[U] (f: Nothing => U) = Empty
}

Map Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

aef map[U](f: T => U) =
Cons(f(head), tail.map(f))

Syntactic Sugar: Currying

. Scala provides special syntax for defining a function that
immediately returns another function:

def f(Xg: Ty, w ,Xy: Ty) = (Yo: Uy, w,yy: Uy) => expr
can be rewritten as:

def f (Xg: Tg, w ,Xy: Ty) (Yo: Ug, wyy: Uy) = expr

. Defining a function in this way is called “currying”, after the
computer scientist Haskell Curry

20

Folding Revisited

abstract class List[+T] {

def foldLeft[S](x: S)(f: (S, T) => S): S
def foldRight[S](x: S)(f: (T, S) => S): S

-/

Note that these functions are curried

21

Folding Revisited

case object Empty extends List[Nothing] {

def foldLeft[S](x: S)(f: (S, T) => S) = x
def foldRight[S](x: S)(f: (T, S) => S) = x

}

22

Folding Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def foldLeft[S](x: S)(f: (S, T) => S) =
tail.foldLeft(f(x, head)) (f)

def foldRight[S](x: S)(f: (T, S) => S) =
f(head, tail.foldRight(x)(f))

}
}

Note that foldLeft is tail-recursive, but foldRight is not;
therefore, foldLeft is usually preferred.

23

Fold Revisited

def foldLeft[S >: T](x: S)(f: (S5, S) =>5) =
tail.foldLeft(f(x, head), fT)

Cons(1,Cons(2,Cons(3,Empty))).foldLeft(0)(+) »
Cons(2,Cons(3,Empty)).foldLeft(0 + 1, +) w»
Cons(2,Cons(3,Empty)).foldLeft(l, +) »
Cons(3,Empty).foldLeft(1 + 2, +) »
Cons(3,Empty).foldLeft(3, +) »
Empty.foldLeft(3 + 3, +) »

Empty.foldLeft(6, +) »

6

24

Folding Revisited

def foldRight[S >: T](x: S)(f: (S, S) == S) =
f(tail.foldRight(x, f), head)

Cons(1,Cons(2,Cons(3,Empty))).foldRight(0)(+) »
Cons(2,Cons(3,Empty)).foldRight(0, +) + 1 »
Cons(3,Empty).foldLeft(0, +) + 2 + 1 »
Empty.foldLeft(0, +) + 3 + 2 + 1 »

O +3+2+1nm

6

25

Reduce Revisited

abstract class List[+T] {

def reducelS >: T](f: (S, S) == S): S

} /
We can elide a zero element for the reduction
provided that the list is non-empty

26

Reduce Revisited

case object Empty extends List[Nothing] {

def reduce[S](f: (S, S) == S) =
throw new UnsupportedOperationException

27

Reduce Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def reduce[S >: T](f: (S, S) => S) =
tall.foldLeft[S] (head) ()

} ////
We explicitly instantiate the type parameter to foldLeft.
Without this, type inference will instantiate the type parameter

based on the static type of head (which is T) and then signal
an error that f is not of type (T, T) =>T.

28

Forall and Exists

abstract class List[+T] {

def forall(p: T => Boolean) =
map(p).foldLeft(true, &&)

def exists(p: T => Boolean) =
map(p) .foldLeft(false, ||)

29

Length

abstract class List[+T] { ..
def length: Int

}
case object Empty extends List[Nothing] { ..

def length = 0

}
case class Cons[+T](head: T, tail: List][T])
extends List[T] { ..

def length = map((:T) => 1).reduce(+)
}

In what real contexts could we justify this definition of length?

30

Pointwise Addition

def pointwiseAdd(xs: List[Int], ys: List[Int]): List[Int] = {
require (xs.length == ys.length)

(xs, ys) match {
case (Empty, Empty) => Empty
case (Cons(x1l, xsl1l), Cons(yl, ysl)) =>
Cons(x1l + yl, pointwiseAdd(xsl,ysl))

31

Generalizing to ZipWith

// 1n class List:
def zipWith[U,V](f: (T, U) => V)(that: List[U]): List[V] = {
require (this.length == that.length)

(this, that) match {
case (Empty, Empty) => Empty
case (Cons(x1l,xsl), Cons(yl,ysl)) =>
Cons(f(x1,yl), xsl.zipWith(f) (ysl))

32

Defining The Zip Function

// 1n class List:
def zip[U](that: List[U]) = zipWith((, : U))(that)

33

Defining Flatten

def flatten[S](xs: List[List[S]]) = {
xs.foldLeft (Empty) (#+)

}

Because of the specific type of List needed,
we define as a top level function

34

Defining FlatMap

abstract class List[+T] {

def flatMap[S](f: T => List[S]) =
flatten(this.map(f))

}
}

In contrast to flatten, our flatMap function
can be defined on arbitrary lists

35

Defining FlatMap

. These definitions suggest that flatMap is the best
thought of as the more primitive notion

. We can define flatMap as a method on lists directly and
then define flatten in terms of it

36

Defining FlatMap

abstract class List[+T] { ..
def flatMap[S](f: Nothing => List[S]): List[S]
}

case object Empty extends List[Nothing] { ..
def flatMap[S](f: Nothing => List[S]) = Empty
}

case class Cons[+T](head: T, tail: List[T])
extends List[T] { ..
def flatMap[S](f: T => List[S]) =
f(head) ++ tail.flatMap(f)

37

Defining Filter

abstract class List[+T] {

def filter[U](p: T => Boolean): List[T]
}

38

Defining Filter

case object Empty extends List[Nothing] {

def filter[U](p: T => Boolean) = Empty
}

39

Defining Filter

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def filter[U](p: T => Boolean) = {
1f (p(head)) Cons(head, tail.filter(p))
else tail.filter(p)

}
}

40

For Expressions

As with all expressions, for expressions reduce to a
value

The value reduced to is a collection

The type of collection produced depends on the types of
collections iterated over

Each iteration produces a value to include in the
resulting collection

41

Many Maps and Filters Can Be
Expressed Using For Expressions

for (x <- xs) yield square(x) + 1

42

Many Maps and Filters Can Be
Expressed Using For Expressions

for (x <- xs) yield square(x) + 1

We call this a generator

43

Many Maps and Filters Can Be
Expressed Using For Expressions

for clauses yleld body

44

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 1 to 10) vyield square(1i) + 1

N

Includes 10
(closed interval)

45

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 0 until 10) yield square(1i) + 1

N

Does not include 10
(half-open interval)

46

Many Maps and Filters Can Be
Expressed Using For Expressions

Predicate filter

for { for even numbers
1 <- 0 until 19///////

1f 1 % 2 ==
} yield square(1i) + 1

\ Use curly braces in place of parents to

allow for multiple expression clauses

47

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 0 until 10 by 2)
yield square(1i) + 1

Specifying a “step” for the range is
another way to get the even numbers

48

Many Maps and Filters Can Be
Expressed Using For Expressions

// BAD FORM
for (1 <- O until xs.length)
yvield square(xs.nth(i)) + 1

49

Many Maps and Filters Can Be
Expressed Using For Expressions

// Write this 1nstead
for (x <- xs)
yield square(x) + 1

50

Takeaways

Variance:

Consumed values are contra-variant
(e.g., function arguments)

Produced values are co-variant
(e.g., function return values)

Checking correctness of annotations is hard—be glad
that the compiler does this for you!

Scala’s for-comprehensions are a concise short-hand for
composing monadic operations: flatMap, map, filter

51

