Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 4, 2018

Checking Variance

To Check Variance, We Annotate
Each Type Location With A Polarity

. Recursively descend a class definition:

. At top level, all locations are positive
Polarity is flipped at method parameter positions
Polarity is flipped at method type parameter positions
Polarity is flipped at arrow type parameter positions

Polarity is flipped at positions of contravariant type
parameters

Annotating Polarity

abstract class List[+T] {
def ++[S >: T*](ys: List[S]): List[S']
def map[U-](f: T+ => U-): List[U*]

}

List Operations

Syntactic Sugar: Currying

. Scala provides special syntax for defining a function that
immediately returns another function:

def f(Xxg: Ty, w ,Xy: Ty) = (Yo: Uy, w,yy: Uy) => expr
can be rewritten as:

def f (Xg: Tg, w ,Xy: Ty) (Yo: Ug, w,yy: Uy) = expr

. Defining a function in this way is called “currying”, after the
computer scientist Haskell Curry

6

Folding Revisited

abstract class List[+T] {

def foldLeft[S](x: S)(f: (S, T) => S): S
def foldRight[S](x: S)(f: (T, S) => S): S

A

Note that these functions are curried

Folding Revisited

case object Empty extends List[Nothing] {

def foldLeft[S](x: S)(f: (S, T) == S) = x
def foldRight[S](x: S)(f: (T, S) => S) = x

}

Folding Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def foldLeft[S](x: S)(f: (S, T) => S) =
tail.foldLeft(f(x, head)) (f)

def foldRight[S](x: S)(f: (T, S) =>8S) =
f(head, tail.foldRight(x)(f))
}

}

Note that foldLeft is tail-recursive, but foldRight is not;
therefore, foldLeft is usually preferred.

9

Fold Revisited

def foldLeft[S >: T](x: S)(f: (S5, S) =>5) =
tail.foldLeft(f(x, head), fT)

Cons(1,Cons(2,Cons(3,Empty))).foldLeft(0)(+) »
Cons(2,Cons(3,Empty)).foldLeft(0 + 1, +) »
(
(

Cons(2,Cons(3,Empty)).foldLeft(l, +) »
Cons(3,Empty).foldLeft(l + 2, +) »
Cons(3,Empty).foldLeft(3, +) »
Empty.foldLeft(3 + 3, +) »
Empty.foldLeft(o6, +) »

6

10

Folding Revisited

def foldRight[S >: T](x: S)(f: (S, S) == S) =
f(tail.foldRight(x, f), head)

Cons(1l,Cons(2,Cons(3,Empty))).foldRight(0)(+) »
Cons(2,Cons(3,Empty)).foldRight(0, +) + 1 w»
Cons(3,Empty).foldRight(0, +) + 2 + 1 »
Empty.foldRight(0, +) + 3 + 2 + 1 »

O + 3 +2 + 1 m*

6

11

Reduce Revisited

abstract class List[+T] {

def reducelS >: T](f: (S, S) == S): S

} /
We can elide a zero element for the reduction
provided that the list is non-empty

12

Reduce Revisited

case object Empty extends List[Nothing] {

def reduce[S](f: (S, S) == 5) =
throw new UnsupportedOperationException

13

Reduce Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def reduce[S >: T](f: (S, S) => S) =
talil.foldLeft[S] (head) ()

} ////
We explicitly instantiate the type parameter to foldLeft.
Without this, type inference will instantiate the type parameter

based on the static type of head (which is T) and then signal
an error that f is not of type (T, T) => T.

14

Forall and Exists

abstract class List[+T] {

def forall(p: T => Boolean) =
map(p).foldLeft(true, &&)

def exists(p: T => Boolean) =
map(p) .foldLeft(false, ||)

15

Pointwise Addition

def pointwiseAdd(xs: List[Int], ys: List[Int]): List[Int] = {
require (xs.length == ys.length)

(xs, ys) match {
case (Empty, Empty) => Empty
case (Cons(x1l, xsl1l), Cons(yl, ysl)) =>
Cons(x1l + yl, pointwiseAdd(xsl,ysl))

16

Generalizing to ZipWith

// 1n class List:
def zipWith[U,V](f: (T, U) => V)(that: List[U]): List[V] = {
require (this.length == that.length)

(this, that) match {
case (Empty, Empty) => Empty
case (Cons(xl,xsl), Cons(yl,ysl)) =>
Cons(f(x1,yl), xsl.zipWith(f) (ysl))

17

Defining The Zip Function

// 1n class List:
def zip[U](that: List[U]) = zipWith((, : U))(that)

18

Defining Flatten

def flatten[S](xs: List[List[S]]) = {
xs.foldLeft (Empty) (4+)

}

Because of the specific type of List needed,
we define as a top level function

19

Defining FlatMap

abstract class List[+T] {

def flatMap[S](f: T => List[S]) =
flatten(this.map(T))

}
}

In contrast to flatten, our flatMap function
can be defined on arbitrary lists

20

Defining FlatMap

. These definitions suggest that flatMap is the best
thought of as the more primitive notion

. We can define flatMap as a method on lists directly and

then define flatten in terms of it

21

Defining FlatMap

abstract class List[+T] { ..
def flatMap[S](f: Nothing => List[S]): List[S]
}

case object Empty extends List[Nothing] { ..
def flatMap[S](f: Nothing => List[S]) = Empty
}

case class Cons[+T](head: T, tail: List][T])
extends List[T] { ..
def flatMap[S](f: T => List[S]) =
f(head) ++ tail.flatMap(T)

22

Defining Filter

abstract class List[+T] {

def filter[U](p: T => Boolean): List[T]
}

23

Defining Filter

case object Empty extends List[Nothing] {

def filter[U](p: T => Boolean) = Empty
}

24

Defining Filter

case class Cons[+T](head: T, tail: List[T])
extends List[T] {

def filter[U](p: T => Boolean) = {
1f (p(head)) Cons(head, tail.filter(p))
else tail.filter(p)

}
}

25

For Expressions

As with all expressions, for expressions reduce to a
value

The value reduced to is a collection

The type of collection produced depends on the types of
collections iterated over

Each iteration produces a value to include in the
resulting collection

26

Many Maps and Filters Can Be
Expressed Using For Expressions

for (x <- xs) yield square(x) + 1

27

Many Maps and Filters Can Be
Expressed Using For Expressions

for (x <- xs) yield square(x) + 1

We call this a generator

28

Many Maps and Filters Can Be
Expressed Using For Expressions

for clauses yleld body

29

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 1 to 10) yield square(1i) + 1

N

Includes 10
(closed interval)

30

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 0 until 10) yield square(1i) + 1

N

Does not include 10
(half-open interval)

31

Many Maps and Filters Can Be
Expressed Using For Expressions

Predicate filter

for { for even numbers
i <- 0 until 19///////

1f 1 % 2 ==
} yield square(1i) + 1

\ Use curly braces in place of parents to

allow for multiple expression clauses

32

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 0 until 10 by 2)
yield square(1i) + 1

Specifying a “step” for the range is
another way to get the even numbers

33

Many Maps and Filters Can Be
Expressed Using For Expressions

// BAD FORM
for (1 <- 0 until xs.length)
vield square(xs.nth(i)) + 1

34

Many Maps and Filters Can Be
Expressed Using For Expressions

// Write this instead
for (x <- xs)
yield square(x) + 1

35

Takeaways

Variance:

Consumed values are contra-variant
(e.g., function arguments)

Produced values are co-variant
(e.g., function return values)

Checking correctness of annotations is hard—be glad
that the compiler does this for you!

Scala’s for-comprehensions are a concise short-hand for
composing monadic operations: flatMap, map, filter

36

