
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 17, 2019

Announcement

• Homework 2 was due today at 3pm

• Midterm exam is on Tuesday Oct 29
in DH 1064 (next door) from 7pm – 10pm
(practice exam is on Piazza)

• Homework 3 is due on Thursday Nov 7
(posted to Piazza)

2

Scala Immutable
Collections

3

Immutable Lists

• Behave much like the lists we have defined in class

• Lists are covariant

• The empty list is written Nil

• Nil extends List[Nothing]

4

Immutable Lists

• The list constructor takes a variable number of
arguments:

List(1,2,3,4,5,6)

5

Immutable Lists

• Non-empty lists are built from Nil and Cons (written as
the right-associative operator ::)

1 :: 2 :: 3 :: 4 :: Nil

6

List Operations

• head returns the first element

• tail returns a list of elements but the first

• isEmpty returns true if the list is empty

• Many of the methods we have defined are available on
the built-in lists

7

FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(zero /: xs)(op)

(xs :\ zero)(op)

8

FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(xs foldLeft zero)(op)

(xs foldRight zero)(op)

9

FoldLeft and FoldRight
Written as Methods

• foldLeft:

• foldRight:

xs.foldLeft(zero) { op }

xs.foldRight(zero) { op }

10

SortWith

List(1,2,3,4,5,6) sortWith (_ > _)
↦

List(6, 5, 4, 3, 2, 1)

11

Range

List.range(1,5)
↦

List(1, 2, 3, 4)

12

Using Fill for Uniform Lists

List.fill(10)(0) ↦
List(0,0,0,0,0,0,0,0,0,0)

13

Using Fill for Uniform Lists

List.fill(3,3)(0) ↦

List(List(0,0,0),
List(0,0,0),
List(0,0,0))

14

Tabulating Lists

List.tabulate(3,3) { (m,n) =>
if (m == n) 1 else 0

}
↦
List(List(1,0,0),

List(0,1,0),
List(0,0,1))

15

Immutable Sets

16

Immutable Sets

• Sets are unordered, unrepeated collections of elements

• Set[T] extends the function type T ⇒ Boolean

• Sets are parametric and invariant in their element type

17

Why in-variant?

Set Factory

Set(1,2,3,4,5)

18

Set Element Addition

Set(1,2,3) + 4 ↦
Set(1,2,3,4)

19

Set Element Subtraction

Set(1,2,3) - 2 ↦
Set(1,3)

20

Set(1,2,3) - 4 ↦
Set(1,2,3)

Set Intersection

Set(1,2,3) & Set(2,4,5,3) ↦
Set(2,3)

21

Set(1,2,3) intersect Set(2,4,5,3) ↦
Set(2,3)

Set Union

Set(1,2,3) | Set(2,4,5) ↦
Set(1,2,3,4,5)

22

Set(1,2,3) ++ Set(2,4,5) ↦
Set(1,2,3,4,5)

Set(1,2,3) union Set(2,4,5) ↦
Set(1,2,3,4,5)

Set Difference

23

Set(1,2,3) -- Set(2,4,5,3) ↦
Set(1)

Set(1,2,3) diff Set(2,4,5,3) ↦
Set(1)

Set Cardinality

Set(1,2,3).size ↦
3

24

Set Membership

Set(1,2,3).contains(2) ↦
true

Set(1,2,3)(2) ↦
true

25

The apply method on sets is
equivalent to the contains method.

Immutable Maps

26

Immutable Maps

• Maps are collections of key/value pairs

• They are parametric in both the key and value type

• Covariant in their value type

• Invariant in their key type

27

Why in-variant?

The -> Operator

• The infix operator -> returns a pair of its arguments:

• Note: Scala also allows Unicode Operators, and the infix
“→” operator is one such example:

1 -> 2
↦

(1,2)

1 → 2
↦

(1,2)

28

The → Operator is Left
Associative

> 1 → 2 → 3 → 4
res8: (((Int, Int), Int), Int) = (((1,2),3),4)

29

The Map Factory

Map("a" → 1, "b" → 2, "c" → 3)
↦

Map(a -> 1, b -> 2, c -> 3)

30

Map Addition

Map("a" → 1, "b" → 2, "c" → 3) + ("d" → 4)
↦

Map(a -> 1, b -> 2, c -> 3, d -> 4)

31

Map Operations

The operators/methods are defined in the expected way:

• -

• ++

• --

• size

32

Map Membership

Map("a" → 1, "b" → 2, "c" → 3).contains("b")
↦

true

33

Map Lookup

Map("a" → 1, "b" → 2, "c" → 3)("c")
↦
3

34

Map("a" → 1, "b" → 2, "c" → 3).get("c")
↦

Some(3)

Map Keys

Map("a" → 1, "b" → 2, "c" → 3).keys
↦

Set(a, b, c): Iterable[String]

35

Map("a" → 1, "b" → 2, "c" → 3).keySet
↦

Set(a, b, c): Set[String]

Map Values

Map("a" → 1, "b" → 2, "c" → 3).values
↦

Set(1,2,3)

36

Map Empty

Map("a" → 1, "b" → 2, "c" → 3).isEmpty
↦

false

37

Call-By-Value
and

Call-By-Name

38

Call-By-Value

• Thus far, the evaluation semantics we have studied
(both with the substitution and environment models) is
known as call-by-value:

• To evaluate a function application, we first evaluate
the arguments and then evaluate the function body

39

Call-By-Value

• We have seen several “special forms” where this
evaluation semantics is not what we want:

&& || if-else

40

Call-By-Value

• We could delay evaluation in these cases by wrapping
arguments in function literals that take no parameters

def myOr(left: Boolean, right: () => Boolean) =
if (left) true
else right()

41

Call-By-Value

• We could delay evaluation in these cases by wrapping
arguments in function literals that take no parameters

• Functions that take no arguments are referred to as
thunks

myOr(true, () => 1/0 == 2) ↦ true

42

Call-By-Name

• Scala provides a way that we can pass arguments as
thunks without having to wrap them explicitly

We simply leave off the parentheses
in the parameter’s type

def myOr(left: Boolean, right: => Boolean) =
if (left) true
else right

43

Call-By-Name

• Now we can call our function without wrapping the
second argument in an explicit thunk:

• The thunk is applied (to nothing) the first time that the
argument is evaluated in a function

myOr(true, 1/0 == 2) ↦ true

44

Call-By-Name

• We can use by-name parameters to define new control
abstractions:

def myAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

45

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in braces
instead of parentheses

myAssert {
2 + 2 == 4

}

46

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in braces
instead of parentheses

myAssert {
def double(n: Int) = 2 * n
double(2) == 4

}

47

