
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 12, 2019

Traits

2

Traits

Traits provide a way to factor out common behavior
among multiple classes and “mix” it in where appropriate

3

Trait Definitions

Syntactically, a trait definition looks like an abstract class
definition, but with the keyword “trait”:

trait Echo {
def echo(message: String) =
message

}

4

Trait Definitions

• Traits can declare fields and full method definitions

• They must not include constructors

trait Echo {
val language = "Portuguese"
def echo(message: String) =
message

}

5

Using Traits

• Classes “mix in” traits using either the extends or
with keywords

class Parrot extends Echo {
def fly() = {
// forget to fly and talk instead
echo("poly wants a cracker")

}
}

6

Using Traits

• Classes “mix in” traits using either the extends or
with keywords

class Parrot extends Bird with Echo {
def fly() = {
// forget to fly and talk instead
echo("poly wants a cracker")

}
}

7

Using Traits

• Classes “mix in” traits using either the extends or
with keywords

trait Smart {
def somethingClever() =
"better a witty fool than a foolish wit"

}

8

Using Traits

• Classes can mix in multiple traits via multiple withs:

class Parrot extends Bird with Echo
with Smart {
def fly() = {
// forget to fly and talk instead
echo(somethingClever())

}
}

9

Using Traits

Classes can mix in multiple traits via multiple withs:

trait X
case class Foo()

new Foo() with X

10

Must use the new keyword when creating
a new class instance with a mixin trait

Traits with Self-Types

• We can restrict a trait so that it’s only valid when
mixed-in with a specific type

• Useful for declaring extra dependencies

trait SmartTalk { this: Echo with Smart =>
def talk() =
echo(somethingClever)

}

11

Self-Types vs Inheritance

• What is the difference between extends and self-types?

• When would you need to use a self-type
(i.e., an example where extends wouldn’t work)?

12

Whereas extends introduces a subtype relationship,
self-types only specify a dependency.

Self-typing allows introduction of a cyclic dependency
between two types. Cyclic subtyping is not possible.

The Diamond Problem

13

Diamond Inheritance
• Some languages that support unrestricted multiple

inheritance (e.g., C++) suffer from the diamond problem.

• Simplest example: class’s parents have the same parent.

• The problem: If a single class appears multiple times in a
class’s ancestry, how do you handle that?

• Example (not valid Scala):

class A(val x: Int)
class B extends A(4)
class C extends A(5)
class D extends A, B

14

Scala Multiple Inheritance

• Scala does not allow unrestricted multiple inheritance

• Each type can extend exactly one supertype, but can
also “mix in” one or more traits using the with keyword:

class A(val x: Int)
trait B
trait C
class D extends A with B with C

15

Traits and Diamonds
• Scala solves the diamond problem by ensuring that each

constructor is invoked exactly once.

• The same is true for super-method calls.

• Since traits don’t take constructor arguments, subclasses
can’t invoke them with conflicting parameters.

trait A
trait B extends A
trait C extends A
class X extends B with C // OK!

16

Linearization

• To ensure predictable behavior with mix-ins, Scala
defines an algorithm for defining a total ordering over
all supertypes of a given type.

• Since this ordering can be viewed as a linear path
through the directed acyclic graph (DAG) that is the
type’s inheritance relationships, it is called a
linearization.

17

Linearization Rules

• For each type:

• Traverse traits right to left

• Process any traits in its trait-supertypes

• https://www.artima.com/pins1ed/traits.html#i-1280910181-1

• https://scala-lang.org/files/archive/spec/2.13/05-classes-and-
objects.html#class-linearization

18

https://www.artima.com/pins1ed/traits.html#i-1280910181-1
https://scala-lang.org/files/archive/spec/2.13/05-classes-and-objects.html#class-linearization

Why Linearization?

• Predictable super-constructor ordering

• Predictable super-method ordering (for stackable
methods in mix-ins)

• Well-defined implementation

Aside: Python introduced its C3-linearization algorithm in version 2.3 in
2003. Before that, multiple inheritance in Python was a complete mess.

19

