Comp 311
~unctional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Purely Functional Random
Number Generation

trait RandomNumberGenerator {
def nextInt: (Int, RandomNumberGenerator)

¥

Purely Functional Random
Number Generation

case class SimpleRNG(seed: Int) extends RandomNumberGenerator {

val a = 48271
val b =0
val m = Int.MaxValue

def nextInt: (Int, RandomNumberGenerator) = {
val newSeed = (a*seed + b) % m
val newRNG = SimpleRNG(newSeed)
(newSeed, newRNG)

¥
¥

Threading State Through
a Seqguence of Statements

val rng = SimpleRNG(2)
val (nl, rngl) = rng.nextInt
val (nZ2, rng2) = rngl.nextlInt

Transforming Stateful APls to
Functional APIs

trait Foo {
private var s: State = MyState
def bar: Bar
def baz: Int

¥

becomes

trait Foo {
def bar: (Bar, Foo)
def baz: (Int, Foo)

¥

A Better API for State
Actions

* Explicitly threading state from one function
application to the next is tedious and error prone

 We would like to define combinators that pass the
state from one application to the next automatically

* For now, we consider the state of our program to
be defined entirely by the state of our random
number generator

Defining a Type Alias for
State Actions

type StateAction[+A] =
RandomNumberGenerator => (A, RandomNumberGenerator)

A Simple State Action

val nextInt: StateAction[Int] = _.nextInt

A “No-Op” Abstraction Over
State Actions

def unit[A]Ca: A): StateAction[A] =
rng => (a, rng)

A “Compound” State Action

def nonNegativeInt(rng: RandomNumberGenerator):
(Int, RandomNumberGenerator) = {

val (n, rng2) = rng.nextInt
1f (n == Int.MinValue) 0
else 1f (n < @) (-n, rng2)
else (n, rng2)

Constructing a List of
Random Numbers

def randomInts(count: Int): StateAction[List[Int]] = { rng =>
1f (count == 0) (Nil, rng)
else {
val (n, rng2) = rng.nextInt
val (ns, rngN) = randomInts(count - 1)(rng2)
(n :: ns, rngN)
}
ks

Transforming State Actions

e |tis often convenient to form one state action from
another by:

e Performing the given state action

* Applying a function to the resulting value

We will define a combinator that constructs state
actions in this way

* For no immediately obvious reason, we will name this
combinator map

Transforming State Actions
With the Map Combinator

def map[A,B](s: StateAction[A])(f: A => B): StateAction[B] =
rng => 1{
val (a, rng2) = s(rng)
(fCa), rngl)
¥

Using Map

def nonNegativeEven: StateAction[Int] =
map(nonNegativelnt)(1 =1 - (1 % 2))

Random Non-Negative
Numbers in a Range
(Attempt 1)

// INCORRECT
def nonNegativelLessThan(n: Int): StateAction[Int] =
map(nonNegativeInt)(_ % n)

This definition skews the results because
Int. MaxValue might not be divisible by n.

Random Non-Negative
Numbers in a Range
(Attempt 2)

// INCORRECT
def nonNegativelessThan(n: Int): StateAction[Int] =
map(nonNegativelnt) { 1 =
val mod = 1 % n
1f (1 + (n - 1) - mod >= 0) mod
else nonNegativelLessThan(n)

h

But this version does not pass type checking!

Random Non-Negative
Numbers in a Range
(Attempt 2)

* [he problem with our Attempt 2 is that the recursive
call to nonNegativelessThan than produces a

StateAction[Int]

 Our map combinator expects an Int result from the
mapped function, not a StateAction[Int]

* o get a better idea as to how to define
nonNegativelessThan, let us try defining it

without combinators

Random Non-Negative
Numbers in a Range
(Attempt 3)

def nonNegativelLessThan(n: Int): StateAction[Int] = { rng =>
val (1, rng2) = nonNegativelnt(rng)
val mod = 1 % n

1f (1 +(n-1) - mod >= 0) (mod, rng2)
else nonNegativelessThan(n)(rng)

This version works, but now we are back to threading
state explicitly.

We need a new combinator.

Defining FlatMap on State
Actions

def flatMap[A,B](s: StateAction[A])
(f: A => StateAction[B]):
StateAction[B] = { rng =>
val (a, rng2) = s(rng)
fCa)(rng?)
}

Random Non-Negative
Numbers in a Range
(Attempt 4)

def nonNegativelessThan(n: Int): StateAction[Int] = {
flatMap(nonNegativelnt) { 1 =
val mod = 1 % n
i1f (1 + (n-1) - mod >= 0) (mod, _)
else nonNegativelLessThan(n)

¥
¥

We have almost completely eliminated state threading,
except for one underscore.

Random Non-Negative
Numbers in a Range
(Attempt 4)

* \We now have the inverse of our earlier problem:

* QOur flatMap combinator expects an
StateAction|[Int] result from the mapped

function, not an Int

 We can address this problem by wrapping part of
the flatMapped function in an application of the unit
constructor for StateActions

Random Non-Negative
Numbers in a Range
(Attempt 5)

def nonNegativelessThand4point5(n: Int):
StateAction[RandomNumberGenerator,Int] = {
nonNegativelnt.flatMap { 1 =>
val result =1 % n
1f (1 + (n - 1) - result >= 0) unit(result)
else nonNegativelLessThan5(n)
¥
¥

Random Non-Negative
Numbers in a Range
(Attempt 5)

def nonNegativelessThand4point5(n: Int):
StateAction[RandomNumberGenerator,Int] = {
nonNegativelnt.flatMap { 1 =>
val result =1 % n
1f (1 + (n - 1) - result >= 0) unit(result)
else nonNegativelLessThan5(n)
Fmap (J => J)

} \

A trailing map of the identity function defines
an equivalent function.

Using For-Expression Syntax

f LatMap of a map

Our final attempt at nonNegativelLessThan involved a

* This is exactly the form of expression that for-

expression syntax

can be used for

» |et’s redefine StateAction as a class with map
and flatMap methods so we can use for- syntax

* We can also genera

arbitrary state, not |u

ize StateActions to work over
st RahdomNumberGenerators

A General StateAction Class

case class StateAction[S,+A](run: S => (A,S))
extends Functionl[S,(A,S)] {
def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] = StateAction { s =>
val (a, s2) = run(s)
(fCa), s2)

ks

def flatMap[B](f: A => StateAction[S,B]): StateAction[S,B] =
StateAction { s =>
val (a, s2) = run(s)
f(a)(s2)
ks

Every Partial Application of the
StateAction Type Defines a Monad

type RNGStateAction[A] =
StateAction[RandomNumberGenerator, A]

The Unit Constructor for
StateActions

def unit[S,A]Ca: A): StateAction[S,A] =
StateAction[S,A](s => (a, s))

The Unit Constructor for
RNGStateActions

def rngUnit[A](Ca: A): RNGStateAction[A] =
StateAction(s => (a, s))

Reformulating nextint as a
State Action

val nextInt =
StateAction {
(rng: RandomNumberGenerator) => rng.nextInt

¥

Reformulating nonNegativelnt
as a State Action

def nonNegativelnt: RngStateAction[Int] =
StateAction {

rng =>
val (n, rng2) = rng.nextInt
1f (n == Int.MinValue) nonNegativelInt(rng2)
else 1f (n < @) (-n, rng2)
else (n, rng2)

Revisiting
nonNegativelLesshan

def nonNegativelLessThan(n: Int):
StateAction[RandomNumberGenerator,Int] = {
nonNegativelnt.flatMap { 1 =
val result =1 % n
1f (1 + (n - 1) - result >= 0) rngUnit(result)
else nonNegativelLessThan(n)
Fmap (J => J)
¥

Using For-Expression Syntax

def nonNegativelLessThan(n: Int): RngStateAction[Int] = {
for {
rand <- nonNegativelnt
result <- {
val randN = rand % n
1f (rand + (n - 1) - randN >= 0) rngUnit(randN)
else nonNegativelessThan(n)
¥
¥
yield result

¥

Revisiting RollDie

def rollDie: StateAction[Int] = nonNegativelessThan(6)

Revisiting RollDie

def rollDie: StateAction[Int] =
map(nonNegativelLessThan(6))(_ + 1)

Revisiting RollDie

def rollDie =

for {
1 <- nonNegativelessThan(o)

}
yield (1 + 1)

Mechanical Proof
Checking

Syntax of Propositional

L ogic

S = x
SAS
SV S

S — S

Factory Methods for
Construction

case object Formulas A
def var(name: String): Formula
def and(left: Formula, right: Formula): Formula
def or(left: Formula, right: Formula): Formula
def implies(left: Formula, right: Formula): Formula
def not(body: Formula): Formula

Seqguents

Sx - S

INnference Rules

Example Inference Rule

I'Fp Abg

And-Int
F'UAFpAgq And-Intro]

More Inference Rules

I'FpAq

[And-Elim-Left]
I'=7p

I'FqgAp
I'=7p

[And-Elim-Right]

Rule Application

case object Rules {

def
def
def
def
def
def
def
def
def
def
def
def
def

identity(p: Formula): Sequent

assumption(s: Sequent): Sequent

generalization(p: Formula) (s: Sequent): Sequent
andIntro(left: Sequent, right: Sequent): Sequent
andElimLeft(s: Sequent): Sequent

andElimRight (s: Sequent): Sequent

orIntrolLeft(p: Formula) (s: Sequent): Sequent
orIntroRight (p: Formula) (s: Sequent): Sequent
orElim(s0O: Sequent, sl: Sequent, s2: Sequent): Sequent
negIntro(p: Formula) (sO: Sequent, sl: Sequent): Sequent
negElim(s: Sequent): Sequent

impliesIntro(s: Sequent): Sequent

impliesElim(p: Formula) (s: Sequent): Sequent

