
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Purely Functional Random
Number Generation

trait RandomNumberGenerator {
 def nextInt: (Int, RandomNumberGenerator)
}

Purely Functional Random
Number Generation

case class SimpleRNG(seed: Int) extends RandomNumberGenerator {
 val a = 48271
 val b = 0
 val m = Int.MaxValue

 def nextInt: (Int, RandomNumberGenerator) = {
 val newSeed = (a*seed + b) % m
 val newRNG = SimpleRNG(newSeed)
 (newSeed, newRNG)
 }
}

Threading State Through
a Sequence of Statements

val rng = SimpleRNG(2)
val (n1, rng1) = rng.nextInt
val (n2, rng2) = rng1.nextInt

Transforming Stateful APIs to
Functional APIs

trait Foo {
 private var s: State = MyState
 def bar: Bar
 def baz: Int
}

becomes

trait Foo {
 def bar: (Bar, Foo)
 def baz: (Int, Foo)
}

A Better API for State
Actions

• Explicitly threading state from one function
application to the next is tedious and error prone

• We would like to define combinators that pass the
state from one application to the next automatically

• For now, we consider the state of our program to
be defined entirely by the state of our random
number generator

Defining a Type Alias for
State Actions

type StateAction[+A] =
 RandomNumberGenerator => (A, RandomNumberGenerator)

A Simple State Action

val nextInt: StateAction[Int] = _.nextInt

A “No-Op” Abstraction Over
State Actions

def unit[A](a: A): StateAction[A] =
 rng => (a, rng)

A “Compound” State Action

def nonNegativeInt(rng: RandomNumberGenerator):
(Int, RandomNumberGenerator) = {
 val (n, rng2) = rng.nextInt
 if (n == Int.MinValue) 0
 else if (n < 0) (-n, rng2)
 else (n, rng2)
 }

Constructing a List of
Random Numbers

 def randomInts(count: Int): StateAction[List[Int]] = { rng =>
 if (count == 0) (Nil, rng)
 else {
 val (n, rng2) = rng.nextInt
 val (ns, rngN) = randomInts(count - 1)(rng2)
 (n :: ns, rngN)
 }
 }

Transforming State Actions
• It is often convenient to form one state action from

another by:

• Performing the given state action

• Applying a function to the resulting value

• We will define a combinator that constructs state
actions in this way

• For no immediately obvious reason, we will name this
combinator map

Transforming State Actions
With the Map Combinator

def map[A,B](s: StateAction[A])(f: A => B): StateAction[B] =
 rng => {
 val (a, rng2) = s(rng)
 (f(a), rng2)
 }

Using Map

def nonNegativeEven: StateAction[Int] =
 map(nonNegativeInt)(i => i - (i % 2))

Random Non-Negative
Numbers in a Range

(Attempt 1)

// INCORRECT
def nonNegativeLessThan(n: Int): StateAction[Int] =
 map(nonNegativeInt)(_ % n)

This definition skews the results because
Int.MaxValue might not be divisible by n.

Random Non-Negative
Numbers in a Range

(Attempt 2)

 // INCORRECT
 def nonNegativeLessThan(n: Int): StateAction[Int] =
 map(nonNegativeInt) { i =>
 val mod = i % n
 if (i + (n - 1) - mod >= 0) mod
 else nonNegativeLessThan(n)
 }

But this version does not pass type checking!

Random Non-Negative
Numbers in a Range

(Attempt 2)
• The problem with our Attempt 2 is that the recursive

call to nonNegativeLessThan than produces a
StateAction[Int]

• Our map combinator expects an Int result from the
mapped function, not a StateAction[Int]

• To get a better idea as to how to define
nonNegativeLessThan, let us try defining it
without combinators

Random Non-Negative
Numbers in a Range

(Attempt 3)

 def nonNegativeLessThan(n: Int): StateAction[Int] = { rng =>
 val (i, rng2) = nonNegativeInt(rng)
 val mod = i % n
 if (i + (n - 1) - mod >= 0) (mod, rng2)
 else nonNegativeLessThan(n)(rng)
 }

This version works, but now we are back to threading
state explicitly.

We need a new combinator.

Defining FlatMap on State
Actions

 def flatMap[A,B](s: StateAction[A])
 (f: A => StateAction[B]):
 StateAction[B] = { rng =>
 val (a, rng2) = s(rng)
 f(a)(rng2)
 }

Random Non-Negative
Numbers in a Range

(Attempt 4)

 def nonNegativeLessThan(n: Int): StateAction[Int] = {
 flatMap(nonNegativeInt) { i =>
 val mod = i % n
 if (i + (n - 1) - mod >= 0) (mod, _)
 else nonNegativeLessThan(n)
 }
 }

We have almost completely eliminated state threading,
except for one underscore.

Random Non-Negative
Numbers in a Range

(Attempt 4)

• We now have the inverse of our earlier problem:

• Our flatMap combinator expects an
StateAction[Int] result from the mapped
function, not an Int

• We can address this problem by wrapping part of
the flatMapped function in an application of the unit
constructor for StateActions

Random Non-Negative
Numbers in a Range

(Attempt 5)

 def nonNegativeLessThan4point5(n: Int):
 StateAction[RandomNumberGenerator,Int] = {
 nonNegativeInt.flatMap { i =>
 val result = i % n
 if (i + (n - 1) - result >= 0) unit(result)
 else nonNegativeLessThan5(n)
 }
 }

Random Non-Negative
Numbers in a Range

(Attempt 5)

 def nonNegativeLessThan4point5(n: Int):
 StateAction[RandomNumberGenerator,Int] = {
 nonNegativeInt.flatMap { i =>
 val result = i % n
 if (i + (n - 1) - result >= 0) unit(result)
 else nonNegativeLessThan5(n)
 } map (j => j)
 }

A trailing map of the identity function defines
an equivalent function.

Using For-Expression Syntax
• Our final attempt at nonNegativeLessThan involved a
flatMap of a map

• This is exactly the form of expression that for-
expression syntax can be used for

• Let’s redefine StateAction as a class with map
and flatMap methods so we can use for- syntax

• We can also generalize StateActions to work over
arbitrary state, not just RandomNumberGenerators

A General StateAction Class
 case class StateAction[S,+A](run: S => (A,S))
 extends Function1[S,(A,S)] {
 def apply(s:S) = run(s)

 def map[B](f: A => B): StateAction[S,B] = StateAction { s =>
 val (a, s2) = run(s)
 (f(a), s2)
 }

 def flatMap[B](f: A => StateAction[S,B]): StateAction[S,B] =
 StateAction { s =>
 val (a, s2) = run(s)
 f(a)(s2)
 }
 }

Every Partial Application of the
StateAction Type Defines a Monad

type RNGStateAction[A] =
 StateAction[RandomNumberGenerator, A]

The Unit Constructor for
StateActions

 def unit[S,A](a: A): StateAction[S,A] =
 StateAction[S,A](s => (a, s))

The Unit Constructor for
RNGStateActions

 def rngUnit[A](a: A): RNGStateAction[A] =
 StateAction(s => (a, s))

Reformulating nextInt as a
State Action

 val nextInt =
 StateAction {
 (rng: RandomNumberGenerator) => rng.nextInt
 }

Reformulating nonNegativeInt
as a State Action

 def nonNegativeInt: RngStateAction[Int] =
 StateAction {
 rng =>
 val (n, rng2) = rng.nextInt
 if (n == Int.MinValue) nonNegativeInt(rng2)
 else if (n < 0) (-n, rng2)
 else (n, rng2)
 }

Revisiting
nonNegativeLessThan

 def nonNegativeLessThan(n: Int):
 StateAction[RandomNumberGenerator,Int] = {
 nonNegativeInt.flatMap { i =>
 val result = i % n
 if (i + (n - 1) - result >= 0) rngUnit(result)
 else nonNegativeLessThan(n)
 } map (j => j)
 }

Using For-Expression Syntax

 def nonNegativeLessThan(n: Int): RngStateAction[Int] = {
 for {
 rand <- nonNegativeInt
 result <- {
 val randN = rand % n
 if (rand + (n - 1) - randN >= 0) rngUnit(randN)
 else nonNegativeLessThan(n)
 }
 }
 yield result
 }

Revisiting RollDie

def rollDie: StateAction[Int] = nonNegativeLessThan(6)

Revisiting RollDie

def rollDie: StateAction[Int] =
 map(nonNegativeLessThan(6))(_ + 1)

Revisiting RollDie

 def rollDie =
 for {
 i <- nonNegativeLessThan(6)
 }
 yield (i + 1)

Mechanical Proof
Checking

Syntax of Propositional
Logic

S ::= x (1)

| S ^ S (2)

| S _ S (3)

| S ! S (4)

| ¬S (5)

Factory Methods for
Construction

case object Formulas {

def var(name: String): Formula

def and(left: Formula, right: Formula): Formula

def or(left: Formula, right: Formula): Formula

def implies(left: Formula, right: Formula): Formula

def not(body: Formula): Formula

}

Sequents

S⇤ ` S

Inference Rules

Q⇤
Q

Example Inference Rule

� ` p � ` q

� [� ` p ^ q
[And-Intro]

More Inference Rules

� ` p ^ q

� ` p
[And-Elim-Left]

� ` q ^ p

� ` p
[And-Elim-Right]

Rule Application
case object Rules {

def identity(p: Formula): Sequent

def assumption(s: Sequent): Sequent

def generalization(p: Formula)(s: Sequent): Sequent

def andIntro(left: Sequent, right: Sequent): Sequent

def andElimLeft(s: Sequent): Sequent

def andElimRight(s: Sequent): Sequent

def orIntroLeft(p: Formula)(s: Sequent): Sequent

def orIntroRight(p: Formula)(s: Sequent): Sequent

def orElim(s0: Sequent, s1: Sequent, s2: Sequent): Sequent

def negIntro(p: Formula)(s0: Sequent, s1: Sequent): Sequent

def negElim(s: Sequent): Sequent

def impliesIntro(s: Sequent): Sequent

def impliesElim(p: Formula)(s: Sequent): Sequent

}

