
This Scala notebook uses BeakerX, a Two Sigma Open Source project that enhances Jupyter.

h�p://beakerx.com/ (h�p://beakerx.com/)

In [1]:

In [2]:

Defining Constants
The movie theater profit func�ons that we implemented in the previous lecture contained
several magic constants in their defini�ons: 120 a�endees, 18000 ¢ base cost per showing,
etc. Numeric literals included in func�ons with no explana�on are called magic constants or
magic numbers because, lacking any documenta�on or other context, they seem arcane to the
reader.

A simple way to eliminate magic constants is to give them descrip�ve names. In Scala, we use
the val keyword to define constants:

Out[1]: Scala library version 2.11.12 -- Copyright 2002-2017, LAMP/EPFL

Out[2]: max: (x: Int, y: Int)Int
attendance: (ticketPrice: Int)Int
cost: (ticketPrice: Int)Int

scala.util.Properties.versionMsg

// Definitions from Lecture 04 used in this notebook:

/** Compute the maximum of two integers */
def max(x: Int, y: Int): Int = {
 if (x > y) x else y
} ensuring(result => result == x | result == y)

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance.
 * Undefined for ticket prices over 1000 cents.
 */
def attendance(ticketPrice: Int): Int = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 max(0, 120 + 15 * (500 - ticketPrice) / 10)
} ensuring(result => result >= 0)

/**
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/
def cost(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 18000 + 4 * attendance(ticketPrice)
} ensuring(result => result >= 0)

http://beakerx.com/

In [3]:

We can also take advantage of Scala's built-in type inference and elide the type annota�on for a
constant defini�on. The fact that explicit types are op�onal in many contexts is the primary
reason that Scala syntax puts the type a�er the name rather than before the name, and uses
dedicated keywords such as def and val to denote defini�ons.

In [4]:

Note that although the constant basePerformanceCost defined above has no explicit type
declara�on, that does not mean it is dynamically typed or lacks a sta�c type. We can apply the
typing rules for expressions (from our lecture on sta�c types) to determine that 18000 has the
sta�c type Int , and therefore basePerformanceCost also has the sta�c type Int . The
Scala compiler similarly infers the sta�c types for constants with no explicit type given. The
same logic is used to infer the result type for func�on defini�ons with no explicit result-type
given.

Compound Expressions
Scala, like most programming languages, allows you to create local bindings within a func�on. In
impera�ve languages like Java and Python, these would be called local variables, since the value
of the binding can be changed throughout the func�on body. In Scala, we call these bindings
values—not variables—since they are constant (i.e., immutable). We refer to an expression
prefixed with a sequence of constant value defini�ons as a compound expression. We will refer
to non-compound expressions as simple expressions. The term expression can now refer to
either compound or simple expressions.

Let's restructure the defini�on of the cost func�on from Lecture 04 to use named constant
values in a compound expression:

In [5]:

Out[3]: 18000

Out[4]: 18000

Out[5]: cost: (ticketPrice: Int)Int

val basePerformanceCost: Int = 18000

val basePerformanceCost = 18000

/**
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/
def cost(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)

 val fixedCost = 18000
 val perAttendeeCost = 4

 fixedCost + perAttendeeCost * attendance(ticketPrice)
} ensuring(result => result >= 0)

Syntax for Compount Expressions in Func�ons
We now expand our Core Scala language to allow zero or more val defini�ons within
func�ons:

def fnName(arg0: Type0, arg1: Type1, ...): ResultType = {
 require(preconditionPredicate, "Precondition error message")

 val localConstantA: TypeA = ???
 val localConstantB: TypeB = ???
 ...

 bodyExpression
} ensuring (result => postconditionPredicate, "Postcondition er
ror message")

The explicit type annota�ons ResultType , TypeA , and TypeB are all op�onal, as
discussed above.

Reduc�on Rule for Compound Expressions
1. While there are one or more val bindings in the compound expression:

A. Compute the right-hand-side value of the first val binding using the rules for
reducing simple expressions.

B. Subs�tute the reduced value on the right-hand-side for all occurrences of the le�-
hand-side symbolic name throughout the remainder of this compound expression.

C. Drop the first val binding since it has now been fully reduced and subs�tuted.
2. Reduce the resul�ng simple expression using the rules for reducing expressions.

Example

Let's define a func�on to compute the circumference of a circle:

In [6]:

Now let's step through the reduc�on for the expression circumference(5.0 - 3.0) . For
now we'll treat all require and ensuring clauses in our reduc�on as no-ops.

Out[6]: circumference: (radius: Double)Double

def circumference(radius: Double): Double = {
 require(radius > 0, "Radius must be positive")

 val diameter = radius + radius
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal places

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")

circumference(5.0 - 3.0)
↦
circumference(2.0)
↦
{
 require({2.0} > 0, "Radius must be positive")

 val diameter = {2.0} + {2.0}
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val diameter = {2.0} + {2.0}
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val diameter = {2.0} + {2.0}
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val diameter = 4.0
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 {4.0} * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val pi = 3.14

{4.0} * pi

 {4.0} pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 {4.0} * {3.14}
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 12.56
} ensuring (result => result > 0, "Circumference is positive")
↦
12.56

Let's verify that our hand-evaluated answer is correct:

In [7]:

A note on braces
As men�oned previously, curly braces {} can wrap any expression in Core Scala. They can be
used very similarly to parentheses () , but have slightly different syntac�c behavior. We can
mostly ignore the difference in Core Scala, but I recommend reading the sec�on on Semicolon
Inference in the Programming in Scala book for a be�er descrip�on of the difference in the
Scala language:

h�ps://www.ar�ma.com/pins1ed/classes-and-objects.html#4.2
(h�ps://www.ar�ma.com/pins1ed/classes-and-objects.html#4.2)

Seman�cs of require, ensuring, and assert
We previously hand-waived the seman�cs for the require and ensuring constructs used
for implemen�ng precondi�ons and postcondi�ons. We'll define those now, and also introduce
the assert construct, which is used to define ensuring .

Error States
To help us dis�nguish between different error states, we'll introduce new syntax for expressing
errors with descrip�ons in our reduc�ons:

⊥("Error Message") // error with description

Note that whenever the error value ⊥ (pronounced "bo�om") appears in an expression, the
en�re expression reduces to that error value.

... ⊥(msg) ...
↦
⊥(msg)

Out[7]: 12.56

circumference(5.0 - 3.0)

https://www.artima.com/pins1ed/classes-and-objects.html#4.2

We'll introduce more flexible syntax for expression errors in a later lecture when we discuss
try / catch .

require
{
 require(condition, message)
 trailingCode
}

condition: Boolean
message: String

The rules for evalua�ng a require asser�on are similar to an if expression. We first
reduce the condition expression to a Boolean value. When condition reduces to
true , then the require is a no-op, and the whole require clause is reduced away.

When condition reduces to false , then we then reduce the whole expression to
⊥(message) . Note that the evalua�on of message is deferred and con�ngent on the value

of condition .

Passing Precondi�on

{
 require(true, message)
 trailingCode
}
↦
{
 trailingCode
}

In [8]:

Failing Precondi�on

{
 require(false, message)
 trailingCode
}
↦
⊥(message)

Out[8]: foo

require(true, "message")
"foo"

In [9]:

assert
The seman�cs of assert in Core Scala are iden�cal to require . The only difference is
syntac�c: assert comes a�er the val declara�ons in a compound expression.

{
 assert(condition, message)
 trailingCode
}

condition: Boolean
message: String

The only difference between the two constructs in the Scala language is the type of the error
resul�ng from a failure.

Passing Asser�on

{
 assert(true, message)
 trailingCode
}
↦
{
 trailingCode
}

In [10]:

Failing Asser�on

{
 assert(false, message)
 trailingCode
}
↦
⊥(message)

java.lang.IllegalArgumentException: requirement failed: message
 at scala.Predef$.require(Predef.scala:224)
 ... 46 elided

Out[10]: foo

require(false, "message")
"foo"

assert(true, "message")
"foo"

In [11]:

ensuring
We define the ensuring construct in using assert :

{ value } ensuring(result => condition, message)
↦
{
 val result = {value}
 assert(condition, message)
 result
}

Note that if the symbol result is used in the condition , then it gets reduced to
{value} via the val defini�on.

Passing Postcondi�on

In [12]:

Failing Postcondi�on

In [13]:

Sta�c Type for ensuring

The sta�c type for an ensuring clause is the same as the result type of its input expression.

{ x } ensuring (result => false, "msg")

For example, given the expression above, the sta�c type of the whole expression (including an
ensuring clause) is the same as the sta�c type of the expression x . This makes sense

seman�cally since the purpose of the ensuring clause is to add asser�ons, not to change the

java.lang.AssertionError: assertion failed: message
 at scala.Predef$.assert(Predef.scala:170)
 ... 46 elided

Out[12]: foo

java.lang.AssertionError: assertion failed: message
 at scala.Predef$Ensuring$.ensuring$extension3(Predef.scala:261)
 ... 46 elided

assert(false, "message")
"foo"

{ "foo" } ensuring(result => true, "message")

{ "foo" } ensuring(result => false, "message")

y p p g , g
result. It also follows from the new reduc�on rules for ensuring given above.

Note that even though the predicate given in the example above always evaluates to false
(thus resul�ng in an error), the sta�c type of the expression is s�ll the type of the value that
would result if the predicate evaluated to true . In other words, the sta�c type of the
expression does not change based on the asser�on's predicate.

Type Rules and Asser�ons
The asser�on constructs require and assert have no type in Core Scala. This follows
from the fact that these constructs are not allowed inside a Core Scala simple expression.

However, in the full Scala language you can use require or assert in a posi�on requring
an expression, and thus these constructs have types.

In [14]:

We will talk about the Unit type later in the course, but for now you can think of it like
Void in Java or None in Python.

Circumference Example Revisited
Now that we have proper reduc�on rules for require and ensuring , let's revisit our
hand-evalua�on of circumference(5.0 - 3.0) :

Out[14]: f: ()Unit
g: ()Unit

def f() = require(false)
def g() = assert(false)

circumference(5.0 - 3.0)
↦
circumference(2.0)
↦
{
 require({2.0} > 0, "Radius must be positive")

 val diameter = {2.0} + {2.0}
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 require(true, "Radius must be positive")

 val diameter = {2.0} + {2.0}
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val diameter = {2.0} + {2.0}
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val diameter = 4.0
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 diameter * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val pi = 157.0 / 50.0 // approximation of π to 2 decimal pla
ces

 {4.0} * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
val pi = 3.14

 val pi 3.14

 {4.0} * pi
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 {4.0} * {3.14}
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 12.56
} ensuring (result => result > 0, "Circumference is positive")
↦
{
 val result = {12.56}
 assert(result > 0, "Circumference is positive")
 result
}
↦
{
 assert({12.56} > 0, "Circumference is positive")
 {12.56}
}
↦
{
 assert(true, "Circumference is positive")
 {12.56}
}
↦
{
 {12.56}
}
↦
12.56

No more hand-waiving! Much be�er.

