This Scala notebook uses BeakerX, a Two Sigma Open Source project that enhances Jupyter.

http://beakerx.com/ (http://beakerx.com/)

In [1]: scala.util.Properties.versionMsg

Out[1]: Scala library version 2.11.12 -- Copyright 2002-2017, LAMP/EPFL

Accumulators

Example 1: Factorial

Definition of Factorial

unde fined n <0
Factorial(n) =< 1 n <2
n X Factorial(n — 1) otherwise

In [2]: def factorial(n: Int): Int
require(n >= 0)
if (n< 2) 1
else n * factorial(n-1)

I}
~~

}
Out[2]: factorial: (n: Int)Int

In [3]: factorial(8)

Out[3]: 40320

http://beakerx.com/

We'll leave off the require clause from our following definitions for simplicity. Let's see how a call to
factorial(3) would look if hand-evaluated:

factorial(3)

= { if (3 < 2) 1 else 3 * factorial(3 - 1) }

— { if (false) 1 else 3 * factorial(3 - 1) }

» { 3 * factorial(3 - 1) }

— { 3 * factorial(2) }

= {3 * {if (2 < 2) 1 else 2 * factorial(2 - 1) } }

—» { 3 * { if (false) 1 else 2 * factorial(2 - 1) } }

= { 3 * {2 * factorial(2 - 1) } }

—» {3 * {2 * factorial(l) } }

> {3*{2* {if (1 < 2) 1 else 1 * factorial(1l - 1) } } }
» {3 * {2* {if (true) 1 else 1 * factorial(l - 1) } } }
> {3*{2*{1}}}

»>{3*{2}}

= {6}

In [4]: factorial(3)

Out[4]: 6

Imperative-style Factorial

In [5]: def factLoop(n: Int): Int = {
var acc =1
for (i <- 2 to n) {
acc *= 1
}

acc

}
Out[5]: factLoop: (n: Int)Int

In [6]: factLoop(8)

out[6]: 40320

Modeling an imperative loop with recursion

In [7]: def factNoLoop(n: Int): Int = {
def factHelp(i: Int, acc: Int): Int = {
if (i <= n) factHelp(i+l, acc * i)
else acc

}
factHelp(2, 1)

}
Out[7]: factNoLoop: (n: Int)Int

In [8]: factNoLoop(8)

out[8]: 40320

In [9]: def factAcc(n: Int, i: Int = 2, acc: Int = 1): Int = {
if (i <= n) factAcc(n, i+l1l, acc * i)
else acc

}
Out[9]: factAcc: (n: Int, i: Int, acc: Int)Int

In [10]: factAcc(8)

out[10]: 40320

Let's see how a call to factAcc(3) would look if hand-evaluated:

factAcc(3)

{ if (2 <= 3) factAcc(3, 2 + 1, 1 * 2) else 1}
{ if (true) factAcc(3, 2 + 1, 2 * 2) else 1 }
{ factAcc(3, 2 +1, 1 * 2) }
{ factAcc(3, 3, 1 * 2) }

{ factAcc(3, 3, 2) }

{ if (3 <= 3) factAcc(3, 3 +1, 2 * 3) else 2 }
{ if (true) factAcc(3, 3 + 1, 2 * 3) else 2 }
{ factAcc(3, 3 +1, 2 * 3) }
{ factAcc(3, 4, 2 * 3) }

{ factAcc(3, 4, 6) }

{ if (4 <= 3) factAcc(3, 4 + 1, 6 * 4) else 6 }
{ if (false) factAcc(3, 4 + 1, 6 * 4) else 6 }
{6}

1777117711111 171

In [11]: factAcc(3)

out[11]: 6

Example 2: Reverse

reverse(List(1,2,3)) should resultin List(3,2,1)

In [12]: def reverse(xs: List[Int], acc: List[Int] = Nil): List[Int] = xs match {
case y :: ys => reverse(ys, y :: acc)
case List() => acc

}

Out[12]: reverse: (xs: List[Int], acc: List[Int])List[Int]

In [13]: reverse(List(1,2,3)).toString

Out[13]: List(3, 2, 1)

Example 3: Map

Remember our original definition of map in the lecture slides? It looked something like this:

In [14]: def map(xs: List[Int], f: Int=>Int): List[Int] =
xs match {
case y :: ys => f(y) :: map(ys, f)
case Nil => Nil

}

Out[14]: map: (xs: List[Int], f: Int => Int)List[Int]

In [15]: map(List(1,2,3), 1 + _).toString

Out[15]: List(2, 3, 4)

In [16]: def mapLoop(xs@: List[Int], f: Int=>Int): List[Int] = {
var xs = Xso
var acc = List.empty[Int]
while (xs.nonEmpty) {

valy :: ys = xs
acc = f(y) :: acc
XS = ysS

}

reverse(acc)

}
Out[16]: mapLoop: (xs@: List[Int], f: Int => Int)List[Int]

In [17]: maplLoop(List(1,2,3), 1 + _).toString

Out[17]: List(2, 3, 4)

Now let's re-implement it using an accumulator to build up the state:

In [18]: def mapAcc(xs: List[Int], f: Int=>Int, acc: List[Int] = Nil): List[Int] =
xs match {
case y :: ys => mapAcc(ys, f, f(y) :: acc)
case Nil => reverse(acc)

}
Out[18]: mapAcc: (xs: List[Int], f: Int => Int, acc: List[Int])List[Int]

In [19]: mapAcc(List(1,2,3), 1 + _).toString

Out[19]: List(2, 3, 4)

Tail Recursion

A tail-recursive function is a function where all recursive calls are in tail position, which means it's the very last
thing done in the function's body expression before the returning the resulting value to the caller.

When hand-evaluating Scala programs, a tail-recursive function's body expression reduces to a single recursive
call (in the recursive, non-base case of the function), which causes the entire caller's function body to reduce to
the recursive call's function body.

As seen in the examples above, recursive functions that use accumulators tend to naturally follow tail-recursive
form. Compare the hand-evaluation examples at the top of this notebook for factorial(3) vs factAcc(3) to
see how the non-tail-recursive factorial implementation has to unwind and evaluate additional expressions in
its call stack, whereas factAcc immediately yields a result from the last recursive call because its function body
expression always reduces to just the recursive call in the recursive case.

Tail-call optimization

Since a tail-recursive function reduces to the body of the recursive call in the recursive case, a smart compiler
can take advantage of the fact that the caller's local state is no longer needed. Tail-call optimization causes tail
calls to reuse or replace the caller's activation record (also called a stack frame) with the recursive call. In other
words, a tail-recursive function with 10 tail calls can execute using the same amount of space on the stack as the
same function making a million recursive calls, and returns immediately to the caller with its result without
needing to unwind a deep recursive call stack.

The annotation scala.annotation.tailrec tells the compiler that the following method definition must be tail-
call optimized. If the method is not tail-recursive, then the compiler throws an error, thus avoiding
StackOverflowError caused by recursion at run time. This is similar to the NonNull annotation in Java 8,
where the compiler can help to avoid NullPointerException at run time.

In [20]:

Out[20]:

In [21]:

out[21]:

In [22]:

Out[22]:

In [23]:

@scala.annotation.tailrec
final def reverseTR(xs: List[Int], acc: List[Int] = Nil): List[Int] =
xs match {

case y :: ys => reverseTR(ys, y :: acc)
case List() =» acc

reverseTR: (xs: List[Int], acc: List[Int])List[Int]

@scala.annotation.tailrec
final def mapTR(xs: List[Int], f: Int=>Int, acc: List[Int] = Nil): List[Int] =
xs match {

}

case y :: ys => mapTR(ys, f, f(y) :: acc)
case Nil => reverseTR(acc)

mapTR: (xs: List[Int], f: Int => Int, acc: List[Int])List[Int]

mapTR(List.range(0, 1000000), (x: Int) => x).last

999999

map(List.range(0, 1000000), (x: Int) => x).last

java.lang.StackOverflowError
at map(<console>:90)
at map(<console>:90)
at map(<console>:90)

Why must tail recursive methods be final?

class A {
def f(x: Int): Int = if (x < 10) x else f(x - 3)
}

The method f is obviously tail recursive, right? However, since neither A nor f is final, someone can come along
and do this:

class B extends A {
override def f(x: Int): Int = if (x > @) 2 else f(x - 10) * f(x - 5)
}

Now if | have some arbitrary instance of type A, | don't actually know if invoking f will be tail-call optimized!

More details on tail recursion in Scala

You can read more details about how tail-call optimization works in Scala, including how it actually maps down to
Java bytecode, in Programming in Scala 1st ed, 8.9 Tail recursion:

https://www.artima.com/pins1ed/functions-and-closures.html#8.9 (https://www.artima.com/pins1ed/functions-and-
closures.html#8.9)

Using higher-order functions instead

While tail-recursive functions using accumulators are a powerful tool, they're also complex, which makes
understanding and maintaining them more difficult. When possible, we should instead use existing higher-order
functions to get the same functionality. For example, we can define the Factorial function in Scala in terms of

In [24]: def factFold(n: Int): Int = (2 to n).foldLeft(1)(_*_)

Out[24]: factFold: (n: Int)Int
In [25]: factFold(8)

out[25]: 40320

Note that foldLeft itself is tail-call optimized, so processing large sequences won't result in a
StackOverflowError:

In [26]: (1 to 1000000).foldLeft(0)(_+_)

Out[26]: 1784293664

https://www.artima.com/pins1ed/functions-and-closures.html#8.9

