
This Scala notebook uses BeakerX, a Two Sigma Open Source project that enhances Jupyter.

http://beakerx.com/ (http://beakerx.com/)

In [1]: scala.util.Properties.versionMsg

As an example of using Scala traits for mix-in functionality, we'll implement some simple classes representing
Magic the Gathering creatures with mix-in abilities.

Cards and other images are linked from https://magic.wizards.com/ (https://magic.wizards.com/), © Wizards of
the Coast LLC.

Mana

Out[1]: Scala library version 2.11.12 -- Copyright 2002-2017, LAMP/EPFL

http://beakerx.com/
https://magic.wizards.com/

In [2]: object Color {
 case object White extends Color
 case object Blue extends Color
 case object Black extends Color
 case object Red extends Color
 case object Green extends Color
 case object Generic extends Color
 case object Colorless extends Color
}

sealed abstract class Color

Card States

In [3]: object State {
 case object Library extends State
 case object Hand extends State
 case object Tapped extends State
 case object Untapped extends State
 case object Graveyard extends State
 case object Exile extends State
}

sealed abstract class State

Out[2]: defined object Color
defined class Color

Out[3]: defined object State
defined class State

Cards

In [4]: abstract class Card {
 /** The mana cost to play this card */
 def cost: Map[Color, Int]

 /** State card enters after it is played */
 def postPlayState: State
}

Sorceries

In [5]: abstract class Sorcery extends Card {
 /** Sorceries are discarded after being played */
 def postPlayState = State.Graveyard
}

Creatures

Out[4]: defined class Card

Out[5]: defined class Sorcery

In [6]: abstract class Creature(
 /** Creature's summoning cost */
 val cost: Map[Color, Int],
 /** Creature's attack power */
 val power: Int,
 /** Creature's defensive toughness */
 val toughness: Int) extends Card {

 /**
 * Check if other creature can block this creature's attacks.
 * By default, any creature can block any other creature.
 */
 def isBlockableBy(other: Creature): Boolean = true

 /**
 * Check if this creature can attack in the given state.
 * By default, creatures can attack iff untapped.
 */
 def canAttack(currentState: State): Boolean =
 currentState == State.Untapped

 /**
 * Early (first-strike) combat damage.
 * By default, creatures don't deal early damage.
 */
 def earlyCombatDamange: Option[Int] = None

 /**
 * Normal (non-first-strike) combat damage.
 * By default, this is equal to the creature's power.
 */
 def normalCombatDamange: Option[Int] = Some(power)

 /** Creatures enter the battlefield with summoning sickness */
 def postPlayState = State.Tapped
}

Abilities

Reach & Flying

In [7]: trait Reach { this: Creature => }

Out[6]: defined class Creature

Out[7]: defined trait Reach

In [8]: trait Flying { this: Creature =>
 /**
 * Flying creatures can only be blocked by
 * other Flying creatures or by creatures with Reach.
 */
 override def isBlockableBy(other: Creature): Boolean = other match {
 case (_: Flying) | (_: Reach) => true
 case _ => false
 }
}

Defender

In [9]: trait Defender { this: Creature =>
 /** Defenders can never attack */
 override def canAttack(currentState: State) = false
}

First-strike

In [10]: trait FirstStrike { this: Creature =>
 /** Creatures with first-strike deal damage early. */
 override def earlyCombatDamange: Option[Int] = Some(power)

 /** Creatures with first-strike deal no normal damage. */
 override def normalCombatDamange: Option[Int] = None
}

Double-strike

In [11]: trait DoubleStrike { this: Creature =>
 /** Creatures with double-strike deal early AND normal damage. */
 override def earlyCombatDamange: Option[Int] = Some(power)
}

Haste

Out[8]: defined trait Flying

Out[9]: defined trait Defender

Out[10]: defined trait FirstStrike

Out[11]: defined trait DoubleStrike

In [12]: trait Haste { this: Creature =>
 /** Creatures with haste enter battle untapped. */
 override def postPlayState = State.Untapped
}

Implementing Cards with Abilities

Bartizan Bats

(https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=469872)

In [13]: case object BartizanBats extends Creature(Map(Color.Generic->3, Color.Black->1
), 3, 1) with Flying

Out[12]: defined trait Haste

Out[13]: BartizanBats

https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=469872

Canopy Spider

(https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=469892)

In [14]: case object CanopySpider extends Creature(Map(Color.Generic->1, Color.Green->1
), 1, 3) with Reach

Out[14]: CanopySpider

https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=469892

Minotaur Aggressor

(https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=270800)

In [15]: case object MinotaurAggressor extends Creature(Map(Color.Generic->6, Color.Red
->1), 6, 2) with FirstStrike with Haste

Out[15]: MinotaurAggressor

https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=270800

Skyhunter Skirmisher

(https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=397835)

In [16]: case object SkyhunterSkirmisher extends Creature(Map(Color.Generic->1, Color.W
hite->2), 1, 1) with Flying with DoubleStrike

Out[16]: SkyhunterSkirmisher

https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=397835

Wall of Swords

(https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=29772)

In [17]: case object WallOfSwords extends Creature(Map(Color.Generic->3, Color.White->1
), 3, 5) with Defender with Flying

Out[17]: WallOfSwords

https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=29772

Woodland Druid

(https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=370697)

In [18]: case object WoodlandDruid extends Creature(Map(Color.Green->1), 1, 2)

Allowed to Block?
In [19]: SkyhunterSkirmisher isBlockableBy MinotaurAggressor // Flying vs Normal

In [20]: SkyhunterSkirmisher isBlockableBy CanopySpider // Flying vs Reach

In [21]: WoodlandDruid isBlockableBy WallOfSwords // Flying vs Flying

Out[18]: WoodlandDruid

Out[19]: false

Out[20]: true

Out[21]: true

https://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=370697

In [22]: WoodlandDruid isBlockableBy BartizanBats // Normal vs Flying

In [23]: CanopySpider isBlockableBy WoodlandDruid // Reach vs Normal

In [24]: MinotaurAggressor isBlockableBy CanopySpider // Normal vs Reach

Out[22]: true

Out[23]: true

Out[24]: true

