
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 1 26 August 2013

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
2

Course Information!
•  Meeting time: TTh 10:50am – 12:05pm
•  Meeting place: Martel College 103
•  Instructors: Krishna Palem, Vivek Sarkar
•  Web site: https://wiki.rice.edu/confluence/display/PARPROG/COMP515

•  Prerequisite: COMP 412
•  Textbook

— Allen and Kennedy, Optimizing Compilers for Modern Architectures,
Morgan-Kaufmann, Second Printing, 2005.

•  Grading rubric
— Homeworks (25%)
— Exam 1 (20%)
— Exam 2 (20%)
— Class project (35%)

•  Acknowledgment: Slides from previous offerings of COMP 515 by Prof.
Ken Kennedy (http://www.cs.rice.edu/~ken/comp515/)

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
3

Dependence-Based Compilation!
•  Vectorization and Parallelization require a deeper analysis than

optimization for scalar machines
— Must be able to determine whether two accesses to the same array

might be to the same location

•  Dependence is the theory that makes this possible
— There is a dependence between two statements if they might access

the same location, there is a path from one to the other, and one
access is a write

•  Dependence has other applications
— Memory hierarchy management—restructuring programs to make

better use of cache and registers
–  Includes input dependences

— Scheduling of instructions

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
4

Syllabus !
•  Introduction

— Parallel and vector architectures. The problem of parallel
programming. Bernstein's conditions and the role of dependence.
Compilation for parallel machines and automatic detection of
parallelism.

•  Dependence Theory and Practice
— Fundamentals, types of dependences. Testing for dependence:

separable, gcd and Banerjee tests. Exact dependence testing.
Construction of direction and distance vectors.

•  Preliminary Transformations
— Loop normalization, scalar data flow analysis, induction variable

substitution, scalar renaming.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
5

Syllabus (contd)!
•  Fine-Grain Parallel Code Generation

— Loop distribution and its safety. The Kuck vectorization principle.
The layered vector code-generation algorithm and its complexity.
Loop interchange.

•  Unimodular & Polyhedral loop transformation frameworks
— New topics not covered in textbook

•  Coarse-Grain Parallel Code Generation
— Loop Interchange. Loop Skewing. Scalar and array expansion.

Forward substitution. Alignment. Code replication. Array renaming.
Node splitting. Pattern recognition. Threshold analysis. Symbolic
dependence tests. Parallel code generation and its problems.

•  Control Dependence
— Types of branches. If conversion. Control dependence. Program

dependence graph.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
6

Syllabus (contd)!
•  Memory Hierarchy Management

— The use of dependence in scalar register allocation and management
of the cache memory hierarchy.

•  Scheduling for Superscalar and Parallel Machines Machines
— Role of dependence. List Scheduling. Software Pipelining. Work

scheduling for parallel systems. Guided Self-Scheduling

•  Interprocedural Analysis and Optimization
— Side effect analysis, constant propagation and alias analysis. Flow-

insensitive and flow-sensitive problems. Side effects to arrays.
Inline substitution, linkage tailoring and procedure cloning.
Management of interprocedural analysis and optimization.

•  Compilation of Other Languages.
— C, Verilog, Fortran 90, HPF.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
7

Compiler Challenges for High
Performance Architectures

Allen and Kennedy, Chapter 1

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
8

Features of Machine Architectures!
•  Pipelining
•  Multiple execution units

— pipelined

•  Vector operations
— includes fine-grained SIMD vector parallelism

•  Parallel processing
— Multicore, shared memory, distributed memory, message-passing

•  Superscalar instruction issue, software/hardware prefetch
•  Registers
•  Memory hierarchy
•  Combinations of the above

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
9

Instruction Pipelining!
•  Instruction pipelining

— DLX Instruction Pipeline

— What is the performance challenge?

IF EX MEMID

c1 c2 c3 c4 c5 c6

WB

IF EX MEMID WB

IF EX MEMID WB

c7

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
10

Replicated Execution Logic  
(Floating Point Adders)!

•  Pipelined Execution Units

•  Multiple Execution Units

Fetch
Operands
(FO)

Equate
Exponents
(EE)

Normalize
Mantissas
Add

(AM)
Result
(NR)

Inputs
Result

(EE) (NR)
b3
c3

(AM)
b2 + c2

(FO)
b4
c4

a1

b5

c5

b1 + c1

Adder 1

b2 + c2

Adder 2

b4 + c4

Adder 4

b3 + c3

Adder 3

b5
c5

Results

What is the
performance
challenge?

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
11

Vector Operations!
•  Apply same operation to different positions of one or more

arrays
— Goal: keep pipelines of execution units full

–  Example:
VLOAD V1,A
VLOAD V2,B
VADD V3,V1,V2
VSTORE V3,C

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
12

Very Large Instruction Word (VLIW)!
•  Multiple instruction issue on the same cycle

— Wide word instruction (or superscalar)
— Designated functional units for instruction slots

Source: “VLIW/EPIC: Statically Scheduled ILP”, Joel Emer,
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-823Fall-2005/418A205E-6B93-4EB9-9080-0EDDB32E06D4/0/l21_vliw.pdf

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
13

SIMD (Single Instruction Multiple Data)!
•  Short SIMD architectures

— E.g., MMX, SSE, AltiVec
— Limited vector length (16 bytes for Altivec)
— Contiguous memory access
— Data alignment constraint (128-bit alignment for Altivec)

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
14

SIMT (Single Instruction Multiple Thread)!

Source: 10 Important Problems in Computer Architecture,
David B. Kirk, http://isca2008.cs.princeton.edu/images/ISCA_DK.pdf

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
15

SMP Parallelism  
(Homogeneous Multicore)!

•  Multiple processors with uniform shared memory
— Task Parallelism

–  Independent tasks
— Data Parallelism

–  the same task on different data

•  What is the performance challenge?

p1

Memory

Bus

p2 p3 p3

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
16

Distributed Memory!
•  Memory packaged with processors

— Message passing
— Distributed shared memory

•  SMP clusters
— Shared memory on node, message passing off node

•  Distributed memory in multicore processors
— Intel Single Chip Cloud (SCC) computer
— Tilera

•  What are the performance issues?
— Minimizing communication

–  Data placement
— Optimizing communication

–  Aggregation
–  Overlap of communication and computation

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
17

Compiler Technologies!
•  Program Transformations

— Many of these architectural issues can be dealt with by
restructuring transformations that can be reflected in source
–  Vectorization, parallelization, cache reuse enhancement

— Two key challenges:
–  Determining when transformations are legal
–  Selecting transformations based on profitability

•  Low level code generation
— Some issues must be dealt with at a low level

–  Prefetch insertion
–  Instruction scheduling

•  All require some understanding of the ways that instructions
and statements depend on one another (share data)

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
18

Fortran DO loop notation!
DO I = 1, N! ! ! !DO 10 I = 1, N!

 . . . ! !and ! ! . . .!

END DO ! ! ! 10 !CONTINUE!

!

are equivalent to the following C-for loop:
!

for(I = 1; I <= N; I++) {!

 . . . !

}!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
19

Fortran column major vs.  
C row-major data layouts!

Fortran:
real*8

A(100,100)
A(1,1)
A(2,1)

…
A(100,1)
A(1,2)
A(2,2)

…
A(100,2)

…

C:
double

A[100][100]
A[0][0]
A[0][1]

…
A[0][99]
A[1][0]
A[1][1]

…
A[1][99]

…

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
20

A Common Problem: Matrix Multiply!

DO I = 1, N
 DO J = 1, N
 C(J,I) = 0.0
 DO K = 1, N
 C(J,I) = C(J,I) + A(J,K) * B(K,I)
 ENDDO
 ENDDO

ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
21

MatMult for a Pipelined Machine!

DO I = 1, N,
 DO J = 1, N, 4 // Unroll J loop 4 times
 C(J,I) = 0.0 !Register 1
 C(J+1,I) = 0.0 !Register 2
 C(J+2,I) = 0.0 !Register 3
 C(J+3,I) = 0.0 !Register 4
 DO K = 1, N
 C(J,I) = C(J,I) + A(J,K) * B(K,I)
 C(J+1,I) = C(J+1,I) + A(J+1,K) * B(K,I)
 C(J+2,I) = C(J+2,I) + A(J+2,K) * B(K,I)
 C(J+3,I) = C(J+3,I) + A(J+3,K) * B(K,I)
 ENDDO
 ENDDO
 ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
22

Problems for Vectors!
•  Inner loop must be vector

— And should be stride 1
— Note that array layout is column-major for FORTRAN and row-

major in C

•  Vector registers have finite length (Cray: 64 elements, modern
SIMD processor operands are in the 256-512 byte range)
— Would like to reuse vector register in the compute loop

•  Solution
— Strip mine the loop over the stride-one dimension to 64
— Move the iterate over strip loop to the innermost position

–  Vectorize it there

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
23

Vectorizing Matrix Multiply!

DO I = 1, N
 DO J = 1, N, 64
 DO JJ = J,J+63
 C(JJ,I) = 0.0

 DO K = 1, N

 C(JJ,I) = C(JJ,I) + A(JJ,K) * B(K,I)
 ENDDO
 ENDDO
 ENDDO

ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
24

Vectorizing Matrix Multiply!

DO I = 1, N
 DO J = 1, N, 64
 DO JJ = J,J+63
 C(JJ,I) = 0.0

 ENDDO
 DO K = 1, N

 DO JJ = J,J+63
 C(JJ,I) = C(JJ,I) + A(JJ,K) * B(K,I)
 ENDDO
 ENDDO
 ENDDO

ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
25

MatMult for a Vector Machine  
(using array language notation)!

DO I = 1, N
 DO J = 1, N, 64
 C(J:J+63,I) = 0.0
 DO K = 1, N
 C(J:J+63,I) = C(J:J+63,I) + A(J:J+63,K)*B(K,I)
 ENDDO
 ENDDO

ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
26

Matrix Multiply on Parallel SMPs!

DO I = 1, N ! Independent for all I
 DO J = 1, N
 C(J,I) = 0.0
 DO K = 1, N
 C(J,I) = C(J,I) + A(J,K) * B(K,I)
 ENDDO
 ENDDO

ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
27

Bernstein’s Conditions [1966]!
•  When is it safe to run two tasks R1 and R2 in parallel?

—  If none of the following holds:
1.  R1 writes into a memory location that R2 reads
2.  R2 writes into a memory location that R1 reads
3.  Both R1 and R2 write to the same memory location

•  How can we apply this to loop parallelism?
•  Think of loop iterations as tasks

•  How can we apply this to statement-level parallelism?
•  Think of statement instances as tasks

•  Time for Worksheet #1 !

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
28

Problems on a Parallel Machine!
•  Parallelism must be found at the outer loop level

— But how do we know?

•  Solution
— Bernstein’s conditions

–  Can we apply them to loop iterations?
–  Yes, with dependence

— Statement S2 depends on statement S1 if
–  S2 comes after S1
–  S2 must come after S1 in any correct reordering of statements

— Usually keyed to memory
–  Path from S1 to S2
–  S1 writes and S2 reads the same location
–  S1 reads and S2 writes the same location
–  S1 and S2 both write the same location

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
29

MatMult on a Shared-Memory MP!

PARALLEL DO I = 1, N !
!DO J = 1, N !
! !C(J,I) = 0.0 !
! !DO K = 1, N !
! ! !C(J,I) = C(J,I) + A(J,K) * B(K,I) !
! !ENDDO !
!ENDDO !

END PARALLEL DO!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
30

MatMult on a Vector SMP!

PARALLEL DO I = 1, N
 DO J = 1, N, 64
 C(J:J+63,I) = 0.0
 DO K = 1, N
 C(J:J+63,I) = C(J:J+63,I) + A(J:J+63,K)*B(K,I)
 ENDDO
 ENDDO

ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
31

Memory Hierarchy!
•  Problem: memory is moving farther away in processor cycles

— Latency and bandwidth difficulties

•  Solution
— Reuse data in cache and registers

•  Challenge: How can we enhance reuse?
— Fortran example

DO I = 1, N
 DO J = 1, N
 C(I) = C(I) + A(J)

— Equivalent C/Java code
for (int I = 1; I <= N; I++)
 for (int J = 1; J <= N; J++)
 C[I] = C[I] + A[J];

— Strip mining to reuse data from cache

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
32

Matrix Multiply for Cache Reuse!
DO I = 1, N
 DO J = 1, M
 C(I) = A(I) + B(J)
 ENDDO

ENDDO
•  J loop reuses C(I) and A(I), but not B(J)
•  I loop reuses B(J), but not C(I) and A(I)
•  Solution

— Block/tile the loops so you get reuse of both A and B
–  Multiply a block of A by a block of B and add to block of

C
— When is it legal to interchange the iterate over block loops

to the inside?
•  Time for Worksheet #2 !

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
33

MatMult on a Uniprocessor with Cache!
DO I = 1, N, S

 DO J = 1, N, S
 DO p = I, I+S-1
 DO q = J, J+S-1

 C(q,p) = 0.0
 ENDDO
 ENDDO
 DO K = 1, N, T
 DO p = I, I+S-1
 DO q = J, J+S-1
 DO r = K, K+T-1

 C(q,p) = C(q,p) + A(q,r) * B(r,p)
 ENDDO
 ENDDO
 ENDDO
 ENDDO
 ENDDO

ENDDO

ST elements ST elements

S2 elements

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
34

Dependence!
•  Goal: aggressive transformations to improve performance
•  Problem: when is a transformation legal?

— Simple answer: when it does not change the meaning of the program
— But what defines the meaning?

•  Same sequence of memory states
— Too strong!

•  Same answers
— Hard to compute (in fact intractable)
— Need a sufficient condition

•  We use in this book: dependence
— Ensures instructions that access the same location (with at least

one a store) must not be reordered

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
35

Summary!
•  Modern computer architectures present many performance

challenges
•  Most of the problems can be overcome by transforming loop

nests
— Transformations are not obviously correct --- need to formalize

legality rules

•  Dependence tells us when this is feasible
— Most of the book is about how to use dependence to do this

•  Next lecture
— Chapter 2, Dependence: Theory and Practice

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
36

Course Project Logistics!
•  Today’s “homework” to be completed by tomorrow (Aug 28)

— Form project teams (pairs preferred)
— Sign up on doodle poll to meet with instructors in DH 3131 during

one of these slots on Aug 28th:
–  9:00 – 9:30, 9:30 – 10:00, 10:00 – 10:30

•  Goal of course project is to perform an in-depth study of a
research problem related to the course
— Should include a theoretical component
— Practicality can be demonstrated by hand-coded source-to-source

transformations

•  We will try and assign you a senior PhD student as a mentor for
your project

•  September 17 & 19 are self-study days for you to develop your
project proposal (due by Sep 20)

•  Final project presentations scheduled in class on Nov 26, Dec 3,
and Dec 5

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
37

Worksheet 1 (to be done in pairs)!

DO I = 1, N
 T = A[I] S1
 A[I] = B[I] S2
 B[I] = T S3

ENDDO

•  Using Bernstein conditions, identify pairs of statement instances
that can exhibit one of the following conditions (a different pair
for each condition)

1.  R1 writes into a memory location that R2 reads
2.  R2 writes into a memory location that R1 reads
3.  Both R1 and R2 write to the same memory location
4.  None of the above

Name 1: _________________ Name 2: ________________

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
38

Worksheet 2 (to be done in pairs)!

DO I = 1, N
 DO J = 1, M
 C(I) = A(I) + B(J)
 ENDDO

ENDDO

1.  Assuming a uniprocessor cache with one word per cache line,
and unbounded (“infinite”) capacity, how many cache misses are
incurred by the above code?

2.  How does your answer change if the cache can only hold 4

words?

Name 1: _________________ Name 2: ________________

