
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

http://www.cs.rice.edu/~vsarkar/comp515

COMP 515 Lecture 14 18 October, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

• POPL 1996 tutorial by Krishna Palem & Vivek Sarkar

2

Control Dependences

Chapter 7 (contd)

3

Control Dependences
(Recap from Lecture 12)

• Constraints posed by control flow

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE!

If we vectorize by...
S2 A(1:N) = A(1:N) + B(1:N)*C

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

 100 CONTINUE

…we get the wrong answer

• We are missing dependences

• There is a dependence from S1 to S2 - a control dependence

S2 δ1 S1

4

Control Dependences
• Two strategies to deal with control dependences:

—If-conversion: expose by converting control dependences to data
dependences. Used for vectorization
– Also supported in SIMT hardware (e.g., GPGPUs) which

automatically masks out statements with control conditions =
false

—Explicitly compute control dependences. Used for coarse-grained
parallelism, or in cases where guarded execution is inefficient for
vectorization.

5

Branch Classification

• Forward Branch: transfers control to a target that occurs
lexically after the branch but at the same level of nesting

• Backward Branch: transfers control to a statement occurring
lexically before the branch but at the same level of nesting

• Exit Branch: terminates one or more loops by transferring
control to a target outside a loop nest
—The break and return statements in C are examples of exit

branches, when they occur inside a loop

6

Branch removal for If-conversion
• Basic idea:

—Make a pass through the program.
—Maintain a Boolean expression cc that represents the condition that

must be true for the current expression to be executed
—On encountering a branch, conjoin the controlling expression into cc
—On encountering a target of a branch, its controlling expression is

disjoined into cc

7

Branch Removal: Forward Branches
• Remove forward branches by inserting appropriate guards

! ! DO 100 I = 1,N
C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10
C2 IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
 ENDDO
==>

 DO 100 I = 1,N
 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
 IF(.NOT.m1) m2 = B(I).GT.10
40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
 .AND.m2) B(I) = A(I) - 5

 ENDDO

8

Branch Removal: Forward Branches
• We can simplify to:

 DO 100 I = 1,N

 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)

 B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)

 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

• and then vectorize to:
 m1(1:N) = A(1:N).GT.10

20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

 WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10

40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))

 B(1:N) = B(1:N) + 10

60 WHERE(m1(1:N).OR..NOT.m2(1:N))

 A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5 9

Removal of Forward Branches: Correctness

• To show correctness we must establish:
—the guard for statement instance in the new program is true if and

only if the corresponding statement in the old program is executed,
– unless the statement has been introduced by the compiler to

capture a guard variable value, which must be executed at the
point the conditional expression would have been evaluated

—the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements
in the original program

10

Exit Branches
 DO J = 1, M

 DO I = 1, N

 A(I,J) = B(I,J) + X

S IF (L(I,J)) GO TO 200

 C(I,J) = A(I,J) + Y

 ENDDO

 D(J) = A(N,J)

200 F(J) = C(10,J)

 ENDDO

• more complicated because they terminate a loop

• Solution: relocate exit branches and convert them to forward
branches

11

Exit Branches
 DO J = 1, M

 DO I = 1, N

 A(I,J) = B(I,J) + X

S IF (L(I,J)) GO TO 200

 C(I,J) = A(I,J) + Y

 ENDDO

 D(J) = A(N,J)

200 F(J) = C(10,J)

 ENDDO

 DO J = 1, M

 DO I = 1, N

 IF (C1) A(I,J) = B(I,J) + X

Sa Code to set C1 and C2

 IF (C2) C(I,J) = A(I,J) + Y

 ENDDO

Sb IF (.NOT.C1.OR..NOT.C2) GO TO 200

 D(J) = A(N,J)

200 F(J) = C(10,J)

 ENDDO 12

Exit Branches
• Statements in the inner loop should be executed only if exit

branch was not taken on any previous iteration

• For the ith iteration, C1 and C2 should be
 lm = AND(¬ L(k, J)), 1 ≤ k ≤ i-1

 DO J = 1, M
 lm = .TRUE.

 DO I = 1, N
 IF (lm) A(I,J) = B(I,J) + X

 IF (lm) m1 = .NOT. L(I,J)

 lm = lm .AND. m1
 IF (lm) C(I,J) = A(I,J) + Y

 ENDDO

 m2 = lm
 IF (m2) D(J) = A(N,J)

200 F(J) = C(10,J)

 ENDDO

13

Exit Branches
• After forward substitution and expansion of lm, we get:

 DO J = 1, M
 lm(0,J) = .TRUE.

 DO I = 1, N

 IF (lm(I-1,J)) A(I,J) = B(I,J) + X
 IF (lm(I-1,J)) m1 = .NOT.L(I,J)

 lm(I,J) = lm(I-1,J) .AND. m1

 IF (lm(I,J)) C(I,J) = A(I,J) + Y
 ENDDO

 IF (lm(N,J)) D(J) = A(N,J)
200 F(J) = C(10,J)

 ENDDO

• codegen will produce four vectorized loops…

14

Exit Branches
• After running codegen:

 DO J = 1, M

 lm(0,J) = .TRUE.

 DO I = 1, N
 IF (lm(I-1,J)) m1 =.NOT.L(I,J)

 lm(I,J) = lm(I-1,J) .AND. m1

 ENDDO
 ENDDO

 WHERE(lm(0:N-1,1:M)) A(1:N,1:M)=B(1:N,1:M)+X

 WHERE(lm(1:N,1:M)) C(1:N,1:M)=A(1:N,1:M)+Y
 WHERE(lm(N,1:M)) D(1:M) = A(N,1:M)

200 F(1:M) = C(10,1:M)

• Procedure relocate_branches()

15

Control Dependence
• Disadvantages of if-conversion:

—Unnecessarily complicates code when code cannot be vectorized
—Cannot a priori analyze code to decide whether if-conversion will

lead to parallel code.

• Alternate approach: explicitly expose constraints due to control
flow as control dependences

16

Control Flow Graph Definition (Recap)

17

Control Flow Graph: Example

18

Dominators: Definition

19

Postdominators: Definition

20

Examples of Dominator and
Postdominator Trees

21

Control Dependence: Definition

22

Example: Acyclic CFG and its
Control Dependence Graph (CDG)

23

Control Dependence: Discussion
• A node x in directed graph G with a single exit node

postdominates node y in G if any path from y to the exit node
of G must pass through x.

• A statement y is said to be control dependent on another
statement x if:
—there exists a non-trivial path from x to y such that every

statement z≠x in the path is postdominated by y and
—x is not postdominated by y.

• In other words, a control dependence exists from S1 to S2 if
one branch out of S1 forces execution of S2 and another
doesn’t

• Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

24

Program Dependence Graph

25

Example: Cyclic CFG and its CDG

26

CDG for a Cyclic CFG

27

