
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

http://www.cs.rice.edu/~vsarkar/comp515

COMP 515 Lecture 15 20 October, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

• POPL 1996 tutorial by Krishna Palem & Vivek Sarkar

2

Control Dependences

Chapter 7 (contd)

3

Example: Cyclic CFG and its CDG

4

CDG for a Cyclic CFG

5

Control Dependence and Parallelization
• From Chapter 2: Most loop transformations are unaffected by

loop-independent dependences
—A forward-branch need not inhibit coarse-grain parallelization

• Iteration-reordering transformations like loop reversal, loop
skewing, strip mining, index-set splitting, loop interchange do
not affect loop-independent dependences

• Statement reordering transformations might be problematic:
loop fusion, loop distribution
—Distribution can be performed by including control dependences in

recurrence analysis, and performing scalar expansion on branch
condition

—Fusion of loops that do not contain exit branches is also possible

6

Loop Distribution
• Example: Control Dependence Graph

 for loop body
!
! ! DO I = 1, N

1 IF (A(I).NE.0) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4
 ENDIF
3 A(I) = B(I)
 GOTO 8
4 IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T
 ELSE
6 T = (T + B(I)) – A(I)
7 B(I) = A(I)
 ENDIF
8 C(I) = B(I) + C(I)
 ENDDO

START
t t

7

Loop Distribution
• Fusion into "like" regions

—Loop 1 is parallel
—Loop 2 is sequential
—Loop 3 is parallel

! DO I = 1, N
1 IF (A(I).NE.0) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4
 ENDIF
3 A(I) = B(I)
 GOTO 8
4 IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T
 ELSE
6 T = (T + B(I)) – A(I)
7 B(I) = A(I)
 ENDIF
8 C(I) = B(I) + C(I)
 ENDDO

 Need execution variables E2(I)
and E4(I) to hold result of
branches at statement 2 and 4

8

Loop Distribution
• Consider branch at node 2:

• 3 cases may hold
—Statement 2 is executed and the true

branch to statement 4 is taken
—Statement 2 is executed and the false

branch to statement 3 is taken
—Statement 2 is never executed

because the false branch is taken at
statement 1

• Corresponds to condition for doit
variable to be set:
—A control dependence exists from

S0 to S.

—S0 has its doit flag set
—Value of the conditional expression is the

label on the branch
9

Loop Distribution
• Use three corresponding values: True, False, Undefined

• Procedure DistributeCDG implements these ideas. It inserts
execution variables at appropriate places in the code and
selectively converts control dependences to data dependences

10

Code Generation
• Problem: Mapping the arbitrary control flow represented in the

control dependence graph to real machines
! DO I = 1, N
 S1 IF (p1) GOTO 3

S2 ...
 GOTO 4
3 IF (p3) GOTO 5

4 S4
5 S5
 ENDDO

Loop
distribution

11

Code Generation
• Code generated for first partition:
 DO I = 1, N

 E1(I) = p1

 IF (E1(I).EQ.FALSE) THEN

S2 ...

 ENDIF

S5 ...

ENDDO

• For second partition:
 DO I = 1, N

 IF((E1(I).EQ..TRUE.).AND..NOT.p3).OR.

 (E1(I).EQ..FALSE.)) THEN

S4 ...

 ENDIF

ENDDO

12

Code Generation
• Observation: generating code for graphs in which every vertex

has at most one control dependence predecessor is relatively
easy

• Thus, transform graph into canonical form consisting of a set of
control dependence trees with the following properties:
—each statement is control dependent on at most one other

statement, i.e., each statement is a member of at most one tree
—the trees can be ordered so that all data dependences between

trees flow from trees earlier in the order to trees that are later in
the order i.e., there should be no non-trivial cycle of data
dependence edges among control dependence trees

13

Code Generation
• Simple recursive procedure

• Generate code for each of the subtree in an order consistent
with the data dependences

• Roughly linear in size of the original dependence graph

14

Conclusion
• Idea behind control flow dependences

• If-conversion
—Types of branches and branch removal
—Iterative dependences (append range to each statement)

• Control Dependence Procedure as alternative to if-conversion

• Execution model for control dependence graphs

• Loop Distribution (selective if-conversion)

• Code Generation

15

Compiler Improvement of Register
Usage

Chapter 8

16

Overview
• Improving memory hierarchy performance by compiler

transformations
—Scalar Replacement
—Unroll-and-Jam

• Saving memory loads & stores

• Make good use of the processor registers

17

Motivating Example
DO I = 1, N

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ENDDO

ENDDO

• A(I) can be left in a register
throughout the inner loop

• Standard register allocation fails
to recognize this

DO I = 1, N

! T = A(I)

! DO J = 1, M

! ! T = T + B(J)

! ENDDO

! A(I) = T

ENDDO

• All loads and stores to A in the
inner loop have been saved

• High chance of T being allocated a
register by standard register
allocation

18

Scalar Replacement
• Convert array reference to scalar reference to improve

performance of the coloring based allocator

• Our approach is to use dependences to achieve these memory
hierarchy transformations

19

Dependence and Memory Hierarchy
• True or Flow dependence - save loads and cache misses

• Anti dependence - save cache misses

• Output dependence - save stores and cache misses

• Input “dependence” - save loads and cache misses
—Read-read control flow path with no intervening write

 A(I) = ... + B(I)

 ... = A(I) + k

 A(I) = ...

 ... = B(I)

20

Dependence and Memory Hierarchy
• Loop Carried dependences - Consistent dependences most useful

for memory management purposes

• Consistent dependences - dependences with constant threshold
(dependence distance)

21

Dependence and Memory Hierarchy
• Problem of overcounting optimization opportunities. For example

 S1: A(I) = ...

 S2: ... = A(I)

 S3: ... = A(I)

• But we can save only two memory references not three

• Solution - Prune edges from dependence graph which don’t
correspond to savings in memory accesses

22

• In the reduction example

DO I = 1, N

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ENDDO

ENDDO

Using Dependences
DO I = 1, N

! T = A(I)

! DO J = 1, M

! ! T = T + B(J)

! ENDDO

! A(I) = T

ENDDO

• True dependence - replace the
references to A in the inner loop by
scalar T

• Output dependence - store can be
moved outside the inner loop

• Anti dependence - load can be
moved before the inner loop

23

Scalar Replacement
• Example: Scalar Replacement in

case of loop independent
dependence

! DO I = 1, N

! ! A(I) = B(I) + C

! ! X(I) = A(I)*Q

! ENDDO

! DO I = 1, N

! ! t = B(I) + C

! ! A(I) = t

! ! X(I) = t*Q

! ENDDO

• One fewer load for each
iteration for reference to A

24

Scalar Replacement
• Example: Scalar Replacement in

case of loop carried dependence
spanning single iteration

!

! DO I = 1, N

! ! A(I) = B(I-1)

! ! B(I) = A(I) + C(I)

! ENDDO

! tB = B(0)

! DO I = 1, N

! ! tA = tB

! ! A(I) = tA

! ! tB = tA + C(I)

! ! B(I) = tB

! ENDDO

• One fewer load for each
iteration for reference to B
which had a loop carried true
dependence spanning 1 iteration

• Also one fewer load per
iteration for reference to A

25

26

Scalar Replacement
• Example: Scalar Replacement in

case of loop carried dependence
spanning multiple iterations

!

! DO I = 1, N

! ! A(I) = B(I-1) + B(I+1)

! ENDDO

! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• One fewer load for each iteration
for reference to B which had a
loop carried input dependence
spanning 2 iterations

• Invariants maintained were
 t1=B(I-1);t2=B(I);t3=B(I+1)

27

Preloop

Main Loop

Eliminate Scalar Copies
! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• Unnecessary register-register
copies

• Unroll loop 3 times

! t1 = B(0)

! t2 = B(1)

! mN3 = MOD(N,3)

! DO I = 1, mN3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

! DO I = mN3 + 1, N, 3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = B(I+2)

! ! A(I+1) = t2 + t1

! ! t2 = B(I+3)

! ! A(I+2) = t3 + t2

! ENDDO

