
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 17 1 November, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

2

Compiler Improvement of Register
Usage

Chapter 8 (contd)

3

Simplified View of Scalar Replacement
Algorithm (Section 8.3.7)

Simplifying assumptions:
• No control flow in loop body
• Other loop transformations (interchange, alignment, fusion, unroll-and-

jam, index set splitting) have been performed as a pre-pass and can
be ignored here

• Ignore register pressure issues at this stage

High-level Algorithm:
1. Prune dependence graph for scalar replacement
2. Apply “typed fusion” to partition dependence graph into “name

partitions” (each partition is a candidate for sharing a scalar variable)
3. For each selected partition

A) If non-cyclic, replace using set of temporaries
B) If cyclic replace with single temporary
C) Insert loads and stores for each inconsistent dependence

4

DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

Scalar Replacement: Case A
t0A = A(0); t1A0 = A(1);

tB1 = B(0); tB2 = B(1)

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB3 + tB2

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1

5

Scalar Replacement: Case B
! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I)

! ! ENDDO

• replace with single temporary...

 DO I = 1, N

! ! ! tA = B(I) + C(I,J)

! ! ! C(I,J) = tA + D(I)

! ! ENDDO

! ! A(J) = tA

6

Pruning the Dependence Graph for
Scalar Replacement (Section 8.3.1)

Goal:
• Only retain dependence edges that represent a possible elimination of a

load and/or a store operation via scalar replacement
NOTE: pruned dependence graph is reference-level (not statement-level)
Pruning Algorithm:
Phase 0: Start with dependence graph containing only flow and input

dependences (remove all anti and output dependences)
Phase 1: Eliminate all killed dependences (dependences with a killing store

between source and destination)
Phase 2: Identify generators. A generator is a reference with no

incoming input/flow dependence and at least one outgoing input/flow
dependence.

Phase 3: Find name partitions and eliminate input dependences within
partitions. Start with each generator, and mark each reference
reachable from the generator in pruned dependence graph as part of
that partition. (Typed fusion algorithm can be used for this phase).

7

Phase 1: Eliminate Killed Dependences
• When killed dependence is a flow dependence

 S1: A(I+1) = ...
 S2: A(I) = ...
 S3: ... = A(I)

—Store in S2 is a killing store. Flow dependence from S1 to S3 is
pruned

• When killed dependence is an input dependence
 S1: ... = A(I+1)
 S2: A(I) = ...

 S3: ... = A(I-1)

—Store in S2 is a killing store. Input dependence from S1 to S3 is
pruned

8

• Generators are identified below in red

DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

 A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Any assignment reference with at least one flow dependence
emanating from it to another statement in the loop

• Any use reference with at least one input dependence emanating
from it and no input or flow dependence into it

Phase 2: Identify Generators

9

Phase 3: Find Name Partitions
• Find name partitions and eliminate input dependences

—Use Typed Fusion
– References as vertices
– Pruned (flow/input) dependence edges are fusible edges
– Output and anti- dependences are bad edges
– Name of array as type

• Clean-up: Eliminate input dependences between two elements of
same name partition unless source is a generator

10

Example of Phases 0, 1, 2
DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Dashed edges are pruned

• Each reference has at most one
predecessor in the pruned graph

• Generator = source of edge in
pruned graph

 DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

! ENDDO

• Dependence pattern before
pruning (including input
dependences)

• Not all edges suggest memory
access savings

11

DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Apply scalar replacement after
pruning the dependence graph

• Needs special-case handling of
loop-carried dependences (to be
discussed later)

Scalar Replacement for Previous
Example

t0A = A(0); t1A0 = A(1);

tB1 = B(0); tB2 = B(1);

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB2 + tB3

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1

• Only one load and one store per
iteration

12

Complication 1 (pg 390): Handling
Dependence Cycle in Loop

— Reference is in a dependence cycle in the loop, and can be
replaced by a single scalar variable

! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I)

! ! ENDDO

• Assign single scalar to the reference in the cycle

• Replace A(J) by a scalar tA and insert A(J)=tA before or after
the loop depending on upward/downward exposed occurrence

13

Complication 2: Inconsistent Dependences
w/ non-constant threshold (pp. 390-391)

• Special cases: Inconsistent
dependences

! DO I = 1, N

! ! A(I) = A(I-1) + B(I)

! ! A(J) = A(J) + A(I)

! ENDDO

• Store to A(J) kills A(I)

• Only one scalar replacement
possible

! DO I = 1, N

! ! tAI = A(I-1) + B(I)

! ! A(I) = tAI

! ! A(J) = A(J) + tAI

! ENDDO

• This code can be improved
substantially by index set
splitting

14

Conclusion
• We have learned two memory hierarchy transformations:

—scalar replacement
—unroll-and-jam

• They reduce the number of memory accesses by maximum use
of processor registers

15

Managing Cache

Allen and Kennedy, Chapter 9

16

Introduction
• Register

—One word per register (typically, but there may be exceptions e.g.,
SIMD registers)

—Temporal reuse
—Direct store
—Eviction (spills) managed by software

• Cache
—Multiple words in a cache line, multiple lines in an associative set,

multiple sets in a cache
—Temporal and Spatial reuse
—Load before store
—Eviction managed by hardware (software can also help)

17

Spatial Reuse
• Permits high reuse when accessing closely located data

• DO I = 1, M

 DO J = 1, N

 A(I, J) = A(I, J) + B(I, J)

 ENDDO

 ENDDO

 No reuse/locality for Fortran’s column-major layout

18

Spatial Reuse
• DO J = 1, N

 DO I = 1, M

 A(I, J) = A(I, J) + B(I, J)

 ENDDO

 ENDDO

 Iterates over columns instead

19

Temporal Reuse
• Reuse limited by cache size, LRU replacement strategy

• DO I = 1, M

 DO J = 1, N

 A(I) = A(I) + B(J)

 ENDDO

 ENDDO

20

Temporal Reuse

• Strip mining + Interchange (or Tiling) can improve
temporal reuse when tile size S is chosen so that
inner loops can fit in cache

• DO J = 1, N, S

 DO I = 1, M

 DO jj = J, MIN(N, J+S-1)

 A(I) = A(I) + B(jj)

 ENDDO

 ENDDO

 ENDDO
21

