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Managing Cache

Allen and Kennedy, Chapter 9
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Loop Interchange
• Which loop should be innermost ?

• Strives to reduce distances between memory accesses to 
increase locality

• Attaches cost function to the loop and computes for best loop 
ordering
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Cost Assignment
• Consider cost analysis for an innermost loop with N iterations, 

for arrays with element size = s, and a cache with line size = l

• Cost is 1 for references that do not depend on loop induction 
variables

• Cost is N for references based on induction variables over a 
non-contiguous space

• Cost is Ns/l for induction variables based references over 
contiguous space

• Multiply the cost by the loop trip count if the reference varies 
with the loop index
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Loop Reordering
• Once the cost is established, reorder the loop from cheapest 

innermost loop to high cost outermost loop
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Loop Blocking (Tiling)
• DO J = 1, M

      DO I = 1, N

         D(I) = D(I) + B(I,J)

      ENDDO

   ENDDO

NM/b misses for each of arrays B and D

==> total of 2NM/b misses

b = block (line) size in words (elements)

Assume that N is large enough for elements of D to overflow cache
7



Blocking loop I
• After strip-mine-and-interchange

   DO II = 1, N, S

      DO J = 1, M

         DO I = II, MIN(II+S-1, N)

            D(I) = D(I) + B(I,J)

         ENDDO

      ENDDO

   ENDDO

NM/b + N/b = (1 + 1/M) NM / b misses

 Assume that S is >= b and is also small enough to allow S elements 
of D to be held in cache for all iterations of the J loop
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Blocking Loop J
• DO J = 1, M, T

      DO I = 1, N

         DO jj = J, MIN(J+T-1, M)

            D(I) = D(I) + B(I, jj)

         ENDDO

      ENDDO

   ENDDO

NM/b misses for array B (if T is small enough) 

(N/b)*(M/T) misses for array D

==> Total of (1 + 1/T) NM/b misses
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Legality of Blocking
• Strip mining is always legal

• Loop interchange is not always legal

procedure StripMineAndInterchange (L, m, k, o, S)
 // L = {L1, L2, ..., Lm}is the loop nest to be transformed
 // Lk is the loop to be strip mined
 // Lo is the outer loop which is to be just inside the by-strip loop
 // after interchange
 // S is the variable to use as strip size; it’s value must be positive
 let the header of Lk be
  DO I = L, N, D;
 split the loop into two loops, a by-strip loop: 
   DO I = L, N, S*D
  and a within-strip loop:
   DO i = I, MAX(I+S*D-D,N), D
  around the loop body;
 interchange the by-strip loop to the position just outside of Lo;
end StripMineAndInterchange
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Legality of Blocking
• Every direction vector for a dependence carried by any of the 

loops L0…Lk+1 has either an “=“ or a “<“ in the kth position

• Conservative testing
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Profitability of Blocking
• Profitable if there is reuse between iterations of a loop that is 

not the innermost loop

• Reuse occurs when:
—There’s a small-threshold dependence of any type, including input, 

carried by the loop (temporal reuse), or
—The loop index appears, with small stride, in the contiguous 

dimension of a multidimensional array and in no other dimension 
(spatial reuse)
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Blocking with Skewing
• For cases where interchange is not possible

• DO I = 1, M

      DO J = 1, N

         A(J+1) = (A(J) + A(J+1))/2

      ENDDO

   ENDDO
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Blocking with Skewing
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Blocking with Skewing
• After Skewing

   DO I = 1, N

      DO j = I, M+I-1

         A(j-I+2) = (A(j-I+1) + A(j-I+2))/2

      ENDDO

   ENDDO
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Blocking with Skewing
• After strip-mine

   DO I = 1, N

      DO j = I, M+I-1, S

         DO jj = j, MAX(j+S-1, M+I-1)

            A(jj-I+2) = (A(jj-I+1) + A(jj-I+2))/2

         ENDDO

      ENDDO

   ENDDO
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Blocking with Skewing
• Loop interchange

   DO j = 1, M+N-1, S

      DO I = MAX(1, j-M+1), MIN(j, N)

         DO jj = j, MAX(j+S-1, M+I-1)

            A(jj-I+2) = (A(jj-I+1) + A(jj-I+2))/2

         ENDDO

      ENDDO

   ENDDO
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Blocking with Skewing
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Triangular Cache Blocking
• DO I = 2, N

      DO J = 1, I-1

         A(I, J) = A(I, I) + A(J, J)

      ENDDO

   ENDDO
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Triangular Cache Blocking
• Applying strip mining

• DO I = 2, N, K

      DO ii = I, I+K-1

         DO J = 1, ii – 1

            A(ii, J) = A(ii, I) + A(ii, J)

         ENDDO

      ENDDO

   ENDDO
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Triangular Cache Blocking
• Applying triangular loop interchange

• DO I = 2, N, K

      DO J = 1, I+K-1

         DO ii = MAX(J+1, I), I+K-1

            A(ii, J) = A(ii, I) + A(ii, J)

         ENDDO

      ENDDO

   ENDDO
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Software Prefetching
• Program reorganization limitations

—Can’t eliminate first time misses
—Can’t eliminate misses unknown at compile time

• Prefetching disadvantages
—May result in premature eviction of useful data in cache
—May bring in data evicted before use or never used
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Software Prefetching Algorithm

• Critical steps in an effective prefetching algorithm
—Accurate determination of the references requiring prefetching
—Insertion of prefetching instructions far enough in advance
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Prefetch Analysis
• Identify where misses may happen

• Make use of dependence analysis strategy
—Build on generator-based partitioning idea from scalar replacement

• First, ensure that every edge that is unlikely to correspond to 
reuse is eliminated from the graph

• Assume that the loop nest has been strip-mined and 
interchanged to increase locality

• Traverses the loop and mark ‘ineffective’ for loops without 
reuse
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Prefetch Analysis
• Estimate amount of data used by each iteration, and determine 

the overflow iteration, which is one more than the number of 
iterations whose data can be accommodated in cache at the 
same time

• Any dependence with a threshold equal to or greater than the 
overflow is considered ineffective for reuse
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Prefetch Analysis
• Identify where prefetching is required

• Two cases:
—If the group generator is not contained in a dependence cycle, a 

miss is expected on each iteration unless references to the 
generator on subsequent iterations display temporal locality

—If the group generator is contained in a dependence cycle, then a 
miss is expected only on the first few iterations of the carrying 
loop, depending on the distance of the carrying dependence. In this 
case, a prefetch to the reference can be placed before the loop 
carrying the dependence
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Insertion for Acyclic Partitions
• Assuming single name partition with single generator

• If there is no spatial reuse of the reference in the loop then 
insert a prefetch before each reference to the generator

• If the references have spatial locality within the loop, 
determine i0 of the first iteration after the initial iteration 
that causes a miss on the access to the generator and the 
iteration l between misses in the cache.
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Insertion for Acyclic Partitions

1. Partition the loop into two parts; 
initial subloop running from 1 to io-1 and 

remainder running from io to the end

2. Strip mine the second loop to have subloops of length l

3. Insert all prefetches needed to avoid misses in the initial subloop 
prior to the loop

4. Eliminate any very short loops by unrolling
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Insertion for Acyclic Partitions

• DO I = 1, M

      A(I, J) = A(I, J) + A(I-1, J)

   ENDDO

Assuming cache line of length four, then io = 5 

and l = 4
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Insertion for Acyclic Partitions

• DO I = 1, 3

      A(I, J) = A(I, J) + A(I-1, J)

   ENDDO

   DO I = 4, M, 4

      IU = MIN(M, I+4)

      DO ii = I, IU

         A(I, J) = A(I, J) + A(I-1, J)

      ENDDO

   ENDDO
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Insertion for Acyclic Partitions

   prefetch(A(0,J))

   DO I = 1, 3

      A(I, J) = A(I, J) + A(I-1, J)

   ENDDO

   DO I = 4, M, 4

      IU = MIN(M, I+3)

      prefetch(A(IU, J))

      DO ii = I, IU

         A(ii, J) = A(ii, J) + A(ii-1, J)

      ENDDO

   ENDDO
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Insertion for Cyclic Name Partitions
• Insert prefetch instructions prior to the loop carrying the cycle

• In the case where loop carrying the dependence is an outer 
loop, the prefetch can be vectorized
—Place prefetch loop nest outside the loop carrying the backward 

dependence of a cyclic name partition
—Rearrange the loop nest so that the loop iterating sequentially over 

cache lines is innermost
—Split the innermost loop into two – 

– Preloop to the first iteration of the innermost loop contaning a 
generator reference beginning on a new cache line and 

– Main loop that begins with the iteration containing the new 
cache reference. 

—Replace the preloop by a prefetch of the first generator reference. 
Set the stride of the main loop to the interval between new cache 
references.
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Insertion for Cyclic Name Partitions

• DO J = 1, M

      DO I = 2, 33

         A(I, J) = A(I, J) * B(I)

      ENDDO

   ENDDO
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Insertion for Cyclic Name Partitions

prefetch(B(2))

DO I = 5, 33, 4

   prefetch(B(I))

ENDDO

DO J = 1, M

   prefetch(A(2,J))

   DO I = 2, 4

      A(I, J) = A(I, J) * B(I)

   ENDDO
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Insertion for Cyclic Name Partitions (contd)

    DO I = 5, 33, 4

       prefetch(A(I, J))

       A(I, J) = A(I, J) * B(I)

       A(I+1, J) = A(I+1, J) * B(I+1)

       A(I+2, J) = A(I+2, J) * B(I+2)

       A(I+3, J) = A(I+3, J) * B(I+3)

    ENDDO

    prefetch(A(33, J))

    A(33, J) = A(33, J) * B(33)

ENDDO
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Prefetching Irregular Accesses

• DO J = 1, M

      DO I = 2, 33

         A(I, J) = A(I, J) * B(IX(I), J)

      ENDDO

   ENDDO
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Prefetching Irregular Accesses

• prefetch(IX(2))

   DO I = 5, 33, 4

      prefetch(IX(I))

   ENDDO

   .

   .

   .
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Effectiveness of Prefetching
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Summary

• Two different kind of reuse
—Temporal reuse
—Spatial reuse

• Strategies to increase the two reuse
—Loop Interchange
—Cache Blocking

• Software prefetching
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