
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 18 3 November, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

2

Managing Cache

Allen and Kennedy, Chapter 9

3

Loop Interchange
• Which loop should be innermost ?

• Strives to reduce distances between memory accesses to
increase locality

• Attaches cost function to the loop and computes for best loop
ordering

4

Cost Assignment
• Consider cost analysis for an innermost loop with N iterations,

for arrays with element size = s, and a cache with line size = l

• Cost is 1 for references that do not depend on loop induction
variables

• Cost is N for references based on induction variables over a
non-contiguous space

• Cost is Ns/l for induction variables based references over
contiguous space

• Multiply the cost by the loop trip count if the reference varies
with the loop index

5

Loop Reordering
• Once the cost is established, reorder the loop from cheapest

innermost loop to high cost outermost loop

6

Loop Blocking (Tiling)
• DO J = 1, M

 DO I = 1, N

 D(I) = D(I) + B(I,J)

 ENDDO

 ENDDO

NM/b misses for each of arrays B and D

==> total of 2NM/b misses

b = block (line) size in words (elements)

Assume that N is large enough for elements of D to overflow cache
7

Blocking loop I
• After strip-mine-and-interchange

 DO II = 1, N, S

 DO J = 1, M

 DO I = II, MIN(II+S-1, N)

 D(I) = D(I) + B(I,J)

 ENDDO

 ENDDO

 ENDDO

NM/b + N/b = (1 + 1/M) NM / b misses

 Assume that S is >= b and is also small enough to allow S elements
of D to be held in cache for all iterations of the J loop

8

Blocking Loop J
• DO J = 1, M, T

 DO I = 1, N

 DO jj = J, MIN(J+T-1, M)

 D(I) = D(I) + B(I, jj)

 ENDDO

 ENDDO

 ENDDO

NM/b misses for array B (if T is small enough)

(N/b)*(M/T) misses for array D

==> Total of (1 + 1/T) NM/b misses

9

Legality of Blocking
• Strip mining is always legal

• Loop interchange is not always legal

procedure StripMineAndInterchange (L, m, k, o, S)
 // L = {L1, L2, ..., Lm}is the loop nest to be transformed
 // Lk is the loop to be strip mined
 // Lo is the outer loop which is to be just inside the by-strip loop
 // after interchange
 // S is the variable to use as strip size; it’s value must be positive
 let the header of Lk be
 DO I = L, N, D;
 split the loop into two loops, a by-strip loop:
 DO I = L, N, S*D
 and a within-strip loop:
 DO i = I, MAX(I+S*D-D,N), D
 around the loop body;
 interchange the by-strip loop to the position just outside of Lo;
end StripMineAndInterchange

10

Legality of Blocking
• Every direction vector for a dependence carried by any of the

loops L0…Lk+1 has either an “=“ or a “<“ in the kth position

• Conservative testing

11

Profitability of Blocking
• Profitable if there is reuse between iterations of a loop that is

not the innermost loop

• Reuse occurs when:
—There’s a small-threshold dependence of any type, including input,

carried by the loop (temporal reuse), or
—The loop index appears, with small stride, in the contiguous

dimension of a multidimensional array and in no other dimension
(spatial reuse)

12

Blocking with Skewing
• For cases where interchange is not possible

• DO I = 1, M

 DO J = 1, N

 A(J+1) = (A(J) + A(J+1))/2

 ENDDO

 ENDDO

13

Blocking with Skewing

14

Blocking with Skewing
• After Skewing

 DO I = 1, N

 DO j = I, M+I-1

 A(j-I+2) = (A(j-I+1) + A(j-I+2))/2

 ENDDO

 ENDDO

15

Blocking with Skewing
• After strip-mine

 DO I = 1, N

 DO j = I, M+I-1, S

 DO jj = j, MAX(j+S-1, M+I-1)

 A(jj-I+2) = (A(jj-I+1) + A(jj-I+2))/2

 ENDDO

 ENDDO

 ENDDO

16

Blocking with Skewing
• Loop interchange

 DO j = 1, M+N-1, S

 DO I = MAX(1, j-M+1), MIN(j, N)

 DO jj = j, MAX(j+S-1, M+I-1)

 A(jj-I+2) = (A(jj-I+1) + A(jj-I+2))/2

 ENDDO

 ENDDO

 ENDDO

17

Blocking with Skewing

18

Triangular Cache Blocking
• DO I = 2, N

 DO J = 1, I-1

 A(I, J) = A(I, I) + A(J, J)

 ENDDO

 ENDDO

19

Triangular Cache Blocking
• Applying strip mining

• DO I = 2, N, K

 DO ii = I, I+K-1

 DO J = 1, ii – 1

 A(ii, J) = A(ii, I) + A(ii, J)

 ENDDO

 ENDDO

 ENDDO

20

Triangular Cache Blocking
• Applying triangular loop interchange

• DO I = 2, N, K

 DO J = 1, I+K-1

 DO ii = MAX(J+1, I), I+K-1

 A(ii, J) = A(ii, I) + A(ii, J)

 ENDDO

 ENDDO

 ENDDO

21

Software Prefetching
• Program reorganization limitations

—Can’t eliminate first time misses
—Can’t eliminate misses unknown at compile time

• Prefetching disadvantages
—May result in premature eviction of useful data in cache
—May bring in data evicted before use or never used

22

Software Prefetching Algorithm

• Critical steps in an effective prefetching algorithm
—Accurate determination of the references requiring prefetching
—Insertion of prefetching instructions far enough in advance

23

Prefetch Analysis
• Identify where misses may happen

• Make use of dependence analysis strategy
—Build on generator-based partitioning idea from scalar replacement

• First, ensure that every edge that is unlikely to correspond to
reuse is eliminated from the graph

• Assume that the loop nest has been strip-mined and
interchanged to increase locality

• Traverses the loop and mark ‘ineffective’ for loops without
reuse

24

Prefetch Analysis
• Estimate amount of data used by each iteration, and determine

the overflow iteration, which is one more than the number of
iterations whose data can be accommodated in cache at the
same time

• Any dependence with a threshold equal to or greater than the
overflow is considered ineffective for reuse

25

Prefetch Analysis
• Identify where prefetching is required

• Two cases:
—If the group generator is not contained in a dependence cycle, a

miss is expected on each iteration unless references to the
generator on subsequent iterations display temporal locality

—If the group generator is contained in a dependence cycle, then a
miss is expected only on the first few iterations of the carrying
loop, depending on the distance of the carrying dependence. In this
case, a prefetch to the reference can be placed before the loop
carrying the dependence

26

Insertion for Acyclic Partitions
• Assuming single name partition with single generator

• If there is no spatial reuse of the reference in the loop then
insert a prefetch before each reference to the generator

• If the references have spatial locality within the loop,
determine i0 of the first iteration after the initial iteration
that causes a miss on the access to the generator and the
iteration l between misses in the cache.

27

Insertion for Acyclic Partitions

1. Partition the loop into two parts;
initial subloop running from 1 to io-1 and

remainder running from io to the end

2. Strip mine the second loop to have subloops of length l

3. Insert all prefetches needed to avoid misses in the initial subloop
prior to the loop

4. Eliminate any very short loops by unrolling

28

Insertion for Acyclic Partitions

• DO I = 1, M

 A(I, J) = A(I, J) + A(I-1, J)

 ENDDO

Assuming cache line of length four, then io = 5

and l = 4

29

Insertion for Acyclic Partitions

• DO I = 1, 3

 A(I, J) = A(I, J) + A(I-1, J)

 ENDDO

 DO I = 4, M, 4

 IU = MIN(M, I+4)

 DO ii = I, IU

 A(I, J) = A(I, J) + A(I-1, J)

 ENDDO

 ENDDO

30

Insertion for Acyclic Partitions

 prefetch(A(0,J))

 DO I = 1, 3

 A(I, J) = A(I, J) + A(I-1, J)

 ENDDO

 DO I = 4, M, 4

 IU = MIN(M, I+3)

 prefetch(A(IU, J))

 DO ii = I, IU

 A(ii, J) = A(ii, J) + A(ii-1, J)

 ENDDO

 ENDDO

31

Insertion for Cyclic Name Partitions
• Insert prefetch instructions prior to the loop carrying the cycle

• In the case where loop carrying the dependence is an outer
loop, the prefetch can be vectorized
—Place prefetch loop nest outside the loop carrying the backward

dependence of a cyclic name partition
—Rearrange the loop nest so that the loop iterating sequentially over

cache lines is innermost
—Split the innermost loop into two –

– Preloop to the first iteration of the innermost loop contaning a
generator reference beginning on a new cache line and

– Main loop that begins with the iteration containing the new
cache reference.

—Replace the preloop by a prefetch of the first generator reference.
Set the stride of the main loop to the interval between new cache
references.

32

Insertion for Cyclic Name Partitions

• DO J = 1, M

 DO I = 2, 33

 A(I, J) = A(I, J) * B(I)

 ENDDO

 ENDDO

33

Insertion for Cyclic Name Partitions

prefetch(B(2))

DO I = 5, 33, 4

 prefetch(B(I))

ENDDO

DO J = 1, M

 prefetch(A(2,J))

 DO I = 2, 4

 A(I, J) = A(I, J) * B(I)

 ENDDO

34

Insertion for Cyclic Name Partitions (contd)

 DO I = 5, 33, 4

 prefetch(A(I, J))

 A(I, J) = A(I, J) * B(I)

 A(I+1, J) = A(I+1, J) * B(I+1)

 A(I+2, J) = A(I+2, J) * B(I+2)

 A(I+3, J) = A(I+3, J) * B(I+3)

 ENDDO

 prefetch(A(33, J))

 A(33, J) = A(33, J) * B(33)

ENDDO

35

Prefetching Irregular Accesses

• DO J = 1, M

 DO I = 2, 33

 A(I, J) = A(I, J) * B(IX(I), J)

 ENDDO

 ENDDO

36

Prefetching Irregular Accesses

• prefetch(IX(2))

 DO I = 5, 33, 4

 prefetch(IX(I))

 ENDDO

 .

 .

 .

37

Effectiveness of Prefetching

38

Summary

• Two different kind of reuse
—Temporal reuse
—Spatial reuse

• Strategies to increase the two reuse
—Loop Interchange
—Cache Blocking

• Software prefetching

39

