
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 24 29 November, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

• Additional references for today’s lecture
— Scalarization using loop alignment and loop skewing, Yuan Zhao, Ken Kennedy.

The Journal of Supercomputing, Volume 31, Issue 1 (January 2005).

— Optimized Execution of Fortran 90 Array Language on Symmetric Shared-
Memory Multiprocessors. Vivek Sarkar. Eleventh Workshop on Languages
and Compilers for Parallel Computing (LCPC), August 1998.

2

Allen and Kennedy, Chapter 13

Compiling Array Assignments

3

Fortran 90
• Fortran 90: successor to Fortran 77

• Slow to gain acceptance:
—Need better/smarter compiler techniques to achieve same level of

performance as Fortran 77 compilers

• This chapter focuses on a single new feature - the array
assignment statement: A(1:100) = 2.0
—Intended to provide direct mechanism to specify parallel/vector

execution

• This statement must be implemented for the specific available
hardware. In an uniprocessor, the statement must be converted
to a scalar loop: Scalarization
—“Scalarization” techniques are also useful for vectorization when

array size is larger than vector width

4

Fortran 90
• Range of a vector operation in Fortran 90 denoted by a triplet:

<lower bound: upper bound: increment>

 A(1:100:2) = B(2:51) + 3.0

• Semantics of Fortran 90 require that for vector statements, all
inputs to the statement are fetched before any results are
stored

5

Outline
• Simple scalarization

• Safe scalarization

• Techniques to improve on safe scalarization
—Loop reversal
—Input prefetching
—Loop splitting

• Multidimensional scalarization

• A framework for analyzing multidimensional scalarization

6

Scalarization

• Replace each array assignment by a corresponding DO loop

• Is it really that easy?

• Two key issues:
— Wish to avoid generating large array temporaries
— Wish to optimize loops to exhibit good memory hierarchy
— performance

7

Simple Scalarization

• Consider the vector statement:
 A(1:200) = 2.0 * A(1:200)

• A scalar implementation:
 S1 DO I = 1, 200

 S2 A(I) = 2.0 * A(I)

 ENDDO

• However, some statements cause problems:
 A(2:201) = 2.0 * A(1:200)

• If we naively scalarize, we get incorrect code:
 DO i = 1, 200

 A(i+1) = 2.0 * A(i)

 ENDDO
8

Scalarization Faults
• Why do scalarization faults occur?

• Vector operation semantics: All values from the RHS of the
assignment should be fetched before storing into the result

• If a scalar operation stores into a location fetched by a later
operation, we get a scalarization fault

• Principle 13.1: A vector assignment generates a scalarization
fault if and only if the scalarized loop carries a true
dependence.

• These dependences are known as scalarization dependences

• To preserve correctness, compiler should never produce a
scalarization dependence

9

Safe Scalarization
• Naive algorithm for safe scalarization: Use temporary storage to make

sure scalarization dependences are not created

• Consider:
 A(2:201) = 2.0 * A(1:200)

• can be split up into:
 T(1:200) = 2.0 * A(1:200)

 A(2:201) = T(1:200)

• Then scalarize using SimpleScalarize
 DO I = 1, 200

 T(I) = 2.0 * A(I)

 ENDDO

 DO I = 2, 201

 A(I) = T(I-1)

 ENDDO 10

Safe Scalarization
• Procedure SafeScalarize implements this method of

scalarization

• Good news:
—Scalarization always possible by using temporaries

• Bad News:
—Substantial increase in memory use due to temporaries
—More memory operations per array element
—Akin to overheads incurred in implementing functional languages

• We shall look at a number of techniques to reduce the effects
of these disadvantages

11

Loop Reversal

 A(2:256) = A(1:255) + 1.0

• A scalarization approach using loop reversal that avoids the
need for a temporary:

 DO I = 256, 2, -1

 A(I) = A(I-1) + 1.0

 ENDDO

12

Loop Reversal
• When can we use loop reversal?

— Loop reversal maps true dependences into antidependences
— But may also map antidependences into dependences

 A(2:257) = (A(1:256) + A(3:258)) / 2.0

• After scalarization:
 DO I = 2, 257

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

• Loop Reversal gets us:
 DO I = 257, 2

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

• Thus, cannot use loop reversal in presence of antidependences13

Input Prefetching

 A(2:257) = (A(1:256) + A(3:258)) / 2.0

• Causes a scalarization fault when naively scalarized to:
 DO I = 2, 257

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

• Problem: Stores into first element of the LHS in the previous
iteration

• Input prefetching: Use scalar temporaries to store elements of
input and output arrays

14

Input Prefetching
• A first-cut at using temporaries:
 DO I = 2, 257

 T1 = A(I-1)

 T2 = (T1 + A(I+1)) / 2.0

 A(I) = T2

 ENDDO

• T1 holds element of input array, T2 holds element of output
array

• But this faces the same problem. Can correct by moving
assignment to T1 into previous iteration...

15

Input Prefetching

 T1 = A(1)

 DO I = 2, 256

 T2 = (T1 + A(I+1)) / 2.0

 T1 = A(I)

 A(I) = T2

 ENDDO

 T2 = (T1 + A(257)) / 2.0

 A(I) = T2

• Note: We are using scalar replacement, but the motivation for
doing so is different than in Chapter 8

16

Input Prefetching
• Already seen in Chapter 8,

we need as many
temporaries as the
dependence threshold + 1.

• Example:
 DO I = 2, 257

 A(I+2) = A(I) +
1.0

 ENDDO

• Can be changed to:
 T1 = A(1)
 T2 = A(2)
 DO I = 2, 255
 T3 = T1 + 1.0
 T1 = T2
 T2 = A(I+2)
 A(I+2) = T3
 ENDDO
 T3 = T1 + 1.0
 T1 = T2
 A(258) = T3
 T3 = T1 + 1.0
 A(259) = T3

17

Input Prefetching
• Can also unroll the loop and eliminate register to register copies

• Principle 13.2: Any scalarization dependence with a threshold
known at compile time can be corrected by input prefetching.

18

Input Prefetching
• Sometimes, even when a scalarization dependence does not have a

constant threshold, input prefetching can be used effectively
 A(1:N) = A(1:N) / A(1)

• which can be naively scalarized as:
 DO i = 1, N

 A(i) = A(i) / A(1)

 ENDDO

• true dependence from first iteration to every other iteration

• antidependence from first iteration to itself

• Via input prefetching, we get:
 tA1 = A(1)

 DO i = 1, N

 A(i) = A(i) / tA1

 ENDDO 19

Multidimensional Scalarization
• Vector statements in Fortran 90 in more than 1 dimension:
 A(1:100, 1:100) = B(1:100, 1, 1:100)

• corresponds to:
 DO J = 1, 100

 A(1:100, J) = B(1:100, 1, J)

 ENDDO

• Scalarization in multiple dimensions:
 A(1:100, 1:100) = 2.0 * A(1:100, 1:100)

• Obvious Strategy: convert each vector iterator into a loop:
 DO J = 1, 100, 1

 DO I = 1, 100

 A(I,J) = 2.0 * A(I,J)

 ENDDO

 ENDDO 20

Multidimensional Scalarization
• What should the order of the loops be after scalarization?

—Familiar question: We dealt with this issue in Loop Selection/
Interchange in Chapter 5

• Profitability of a particular configuration depends on target
architecture
—For simplicity, we shall assume shorter strides through memory are

better
—Thus, optimal choice for innermost loop is the leftmost vector

iterator

21

Multidimensional Scalarization
• Extending previous results to multiple dimensions:

— Each vector iterator is scalarized separately, starting from the leftmost
vector iterator in the innermost loop and the rest of the iterators from
left to right

• Once the ordering is available:
1. Test to see if the loop carries a scalarization dependence. If not, then

proceed to the next loop.
2. If the scalarization loop carries only true dependences, reverse the loop

and proceed to the next loop.
3. Apply input prefetching, with loop splitting where appropriate, to eliminate

dependences to which it applies. Observe, however, that in outer loops,
prefetching is done for a single submatrix (the remaining dimensions).

4. Otherwise, the loop carries a scalarization fault that requires temporary
storage. Generate a scalarization that utilizes temporary storage and
terminate the scalarization test for this loop, since temporary storage will
eliminate all scalarization faults.

22

Outer Loop Prefetching

 A(1:N, 1:N) =

 (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0

• If we try to scalarize this (keeping the column iterator in the
innermost loop) we get a true scalarization dependence (<, >)
involving the second input and an antidependence (>, <)
involving the first input

• Cannot use loop reversal...

23

Outer Loop Prefetching
 A(1:N, 1:N) =

 (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0

• We can use input prefetching on the outer loop. The
temporaries will be arrays:

 T0(1:N) = A(2:N+1, 0)

 DO j = 1, N-1

 T1(1:N)=(A(0:N-1, j+1) + T0(1:N)) / 2.0

 T0(1:N) = A(2:N+1, j)

 A(1:N, j) = T1(1:N)

 ENDDO

 T1(1:N) = (A(0:N-1, N) + T0(1:N)) / 2.0

 A(1:N, N) = T1(1:N)

• Total temporary space required = 2 rows of original matrix

• Better than storage required for copy of the result matrix
24

Loop Interchange
• Sometimes, there is a tradeoff between scalarization and

optimal memory hierarchy usage
 A(2:100, 3:101) = A(3:101, 1:201:2)

• If we scalarize this using the prescribed order:
 DO I = 3, 101

 DO 100 J = 2, 100

 A(J,I) = A(J+1,2*I-5)

 ENDDO

 ENDDO

• Dependences (<, >) (I = 3, 4) and (>, >) (I = 6, 7)

• Cannot use loop reversal, input prefetching

• Can use temporaries

25

Loop Interchange
• However, we can use loop interchange to get:

 DO J = 2, 100

 DO I = 3, 101

 A(J,I) = A(J+1,2*I-5)

 ENDDO

 ENDDO

• Not optimal memory hierarchy usage, but reduction of
temporary storage

• Loop interchange is useful to reduce size of temporaries

• It can also eliminate scalarization dependences
26

General Multidimensional Scalarization
• Goal: To vectorize a single statement which has m vector

dimensions
—Given an ideal order of scalarization (l1, l2, ..., lm)

— (d1, d2, ..., dn) be direction vectors for all plausible and implausible
true dependences of the statement upon itself

—The scalarization matrix is a n × m matrix of these direction
vectors

• For instance:
 A(1:N, 1:N, 1:N) = A(0:N-1, 1:N, 2:N+1) +

 A(1:N, 2:N+1, 0:N-1)

 > = <
 < > =

27

General Multidimensional Scalarization
• If we examine any column of the direction matrix, we can

immediately see if the corresponding loop can be safely
scalarized as the outermost loop of the nest:
—If all entries of the column are = or >, it can be safely scalarized

as the outermost loop without loop reversal.
—If all entries are = or <, it can be safely scalarized with loop

reversal.
—If it contains a mixture of < and >, it cannot be scalarized by

simple means.
– Loop skewing could work

28

• Once a loop has been selected for scalarization, the dependences
carried by that loop, any dependence whose direction vector does not
contain a = in the position corresponding to the selected loop may be
eliminated from further consideration.

• In our example, if we move the second column to the outside, we get:

 > = < = > <

 < > = > < =

• Scalarization in this way will reduce the matrix to:

 > <

General Multidimensional Scalarization

29

Scalarization Example
 DO J = 2, N-1

 A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) +

 A(2:N-1,J-1) + A(2:N-1,J+1)/4.

 ENDDO

• Loop carried true dependence, antidependence

• Naive compiler could generate:
 DO J = 2, N-1

 DO i = 2, N-1

 T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1))/4

 ENDDO

 DO i = 2, N-1

 A(i,J) = T(i-1)

 ENDDO

 ENDDO

• 2 × (N-2)2 accesses to memory due to array T
30

Scalarization Example
• However, can use input prefetching to get:
 DO J = 2, N-1

 tA0 = A(1, J)

 DO i = 2, N-2

 tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4

 tA0 = A(i-1, J)

 A(i,J) = tA1

 ENDDO

 tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4

 A(N-1,J) = tA1

 ENDDO

• If temporaries are allocated to registers, no more memory accesses
than original Fortran 90 program

31

Post Scalarization Issues
• Issues due to scalarization:

—Generates many individual loops
—These loops carry no dependences. So reuse of quantities in

registers is not common

• Solution: Use loop interchange, loop fusion, unroll-and-jam, and
scalar replacement

32

