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Allen and Kennedy, Chapter 13

Compiling Array Assignments
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Fortran 90
• Fortran 90: successor to Fortran 77

• Slow to gain acceptance:
—Need better/smarter compiler techniques to achieve same level of 

performance as Fortran 77 compilers

• This chapter focuses on a single new feature - the array 
assignment statement:    A(1:100) = 2.0
—Intended to provide direct mechanism to specify parallel/vector 

execution

• This statement must be implemented for the specific available 
hardware. In an uniprocessor, the statement must be converted 
to a scalar loop: Scalarization
—“Scalarization” techniques are also useful for vectorization when 

array size is larger than vector width 
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Fortran 90
• Range of a vector operation in Fortran 90 denoted by a triplet: 

<lower bound: upper bound: increment>

   A(1:100:2) = B(2:51) + 3.0

• Semantics of Fortran 90 require that for vector statements, all 
inputs to the statement are fetched before any results are 
stored
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Outline
• Simple scalarization

• Safe scalarization

• Techniques to improve on safe scalarization
—Loop reversal
—Input  prefetching
—Loop splitting

• Multidimensional scalarization

• A framework for analyzing multidimensional scalarization
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Scalarization

• Replace each array assignment by a corresponding DO loop

• Is it really that easy? 

• Two key issues:
—  Wish to avoid generating large array temporaries
—  Wish to optimize loops to exhibit good memory hierarchy 
—    performance
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Simple Scalarization

• Consider the vector statement:
   A(1:200) = 2.0 * A(1:200)

• A scalar implementation:
  S1  DO I = 1, 200

  S2      A(I) = 2.0 * A(I)

    ENDDO

• However, some statements cause problems:
   A(2:201) = 2.0 * A(1:200)

• If we naively scalarize, we get incorrect code:
   DO i = 1, 200

    A(i+1) = 2.0 * A(i)

   ENDDO
8



Scalarization Faults
• Why do scalarization faults occur?

• Vector operation semantics: All values from the RHS of the 
assignment should be fetched before storing into the result

• If a scalar operation stores into a location fetched by a later 
operation, we get a scalarization fault

• Principle 13.1: A vector assignment generates a scalarization 
fault if and only if the scalarized loop carries a true 
dependence.

• These dependences are known as scalarization dependences

• To preserve correctness, compiler should never produce a 
scalarization dependence
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Safe Scalarization
• Naive algorithm for safe scalarization: Use temporary storage to make 

sure scalarization dependences are not created

• Consider:
  A(2:201) = 2.0 * A(1:200)

• can be split up into:
  T(1:200) = 2.0 * A(1:200)

  A(2:201) = T(1:200)

• Then scalarize using SimpleScalarize
  DO I = 1, 200

   T(I) = 2.0 * A(I)

  ENDDO

  DO I = 2, 201

   A(I) = T(I-1)

  ENDDO 10



Safe Scalarization
• Procedure SafeScalarize implements this method of 

scalarization

• Good news: 
—Scalarization always possible by using temporaries

• Bad News:
—Substantial increase in memory use due to temporaries
—More memory operations per array element
—Akin to overheads incurred in implementing functional languages

• We shall look at a number of techniques to reduce the effects 
of these disadvantages
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Loop Reversal

  A(2:256) = A(1:255) + 1.0

• A scalarization approach using loop reversal that avoids the 
need for a temporary:

  DO I = 256, 2, -1

   A(I) = A(I-1) + 1.0

  ENDDO
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Loop Reversal
• When can we use loop reversal?

— Loop reversal maps true dependences into antidependences
— But may also map antidependences into dependences

  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0

• After scalarization:
  DO I = 2, 257

     A(I) = ( A(I-1) + A(I+1) ) / 2.0

  ENDDO

• Loop Reversal gets us:
  DO I = 257, 2

     A(I) = ( A(I-1) + A(I+1) ) / 2.0

  ENDDO

• Thus, cannot use loop reversal in presence of antidependences13



Input Prefetching

  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0

• Causes a scalarization fault when naively scalarized to:
  DO I = 2, 257

     A(I) = ( A(I-1) + A(I+1) ) / 2.0

  ENDDO

• Problem: Stores into first element of the LHS in the previous 
iteration

• Input prefetching: Use scalar temporaries to store elements of 
input and output arrays
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Input Prefetching
• A first-cut at using temporaries: 
   DO I = 2, 257

      T1 = A(I-1)

      T2 = ( T1 + A(I+1) ) / 2.0

      A(I) = T2

   ENDDO

• T1 holds element of input array, T2 holds element of output 
array

• But this faces the same problem. Can correct by moving 
assignment to T1 into previous iteration...
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Input Prefetching
   

   T1 = A(1)

   DO I = 2, 256

      T2 = ( T1 + A(I+1) ) / 2.0

      T1 = A(I)

      A(I) = T2

   ENDDO

   T2 = ( T1 + A(257) ) / 2.0

   A(I) = T2

• Note: We are using scalar replacement, but the motivation for 
doing so is different than in Chapter 8
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Input Prefetching
• Already seen in Chapter 8, 

we need as many 
temporaries as the 
dependence threshold + 1.

• Example:
   DO I = 2, 257

      A(I+2) = A(I) + 
1.0

     ENDDO

• Can be changed to:
   T1 = A(1)
   T2 = A(2)
   DO I = 2, 255
      T3 = T1 + 1.0 
      T1 = T2
      T2 = A(I+2) 
      A(I+2) = T3 
   ENDDO
   T3 = T1 + 1.0
   T1 = T2
   A(258) = T3
   T3 = T1 + 1.0
   A(259) = T3
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Input Prefetching
• Can also unroll the loop and eliminate register to register copies

• Principle 13.2: Any scalarization dependence with a threshold 
known at compile time can be corrected by input prefetching.
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Input Prefetching
• Sometimes, even when a scalarization dependence does not have a 

constant threshold, input prefetching can be used effectively
   A(1:N) = A(1:N) / A(1)

• which can be naively scalarized as:
   DO i = 1, N

      A(i) = A(i) / A(1)

   ENDDO

• true dependence from first iteration to every other iteration

• antidependence from first iteration to itself

• Via input prefetching, we get:
   tA1 = A(1)

   DO i = 1, N

      A(i) = A(i) / tA1

   ENDDO 19



Multidimensional Scalarization
• Vector statements in Fortran 90 in more than 1 dimension:
  A(1:100, 1:100) = B(1:100, 1, 1:100)

• corresponds to:
  DO J = 1, 100

    A(1:100, J) = B(1:100, 1, J)

  ENDDO

• Scalarization in multiple dimensions:
  A(1:100, 1:100) = 2.0 * A(1:100, 1:100)

• Obvious Strategy: convert each vector iterator into a loop:
  DO J = 1, 100, 1

    DO I = 1, 100

      A(I,J) = 2.0 * A(I,J)

    ENDDO

  ENDDO 20



Multidimensional Scalarization
• What should the order of the loops be after scalarization?

—Familiar question: We dealt with this issue in Loop Selection/
Interchange in  Chapter 5

• Profitability of a particular configuration depends on target 
architecture
—For simplicity, we shall assume shorter strides through memory are 

better
—Thus, optimal choice for innermost loop is the leftmost vector 

iterator

21



Multidimensional Scalarization
• Extending previous results to multiple dimensions:

— Each vector iterator is scalarized separately, starting from the leftmost 
vector iterator in the innermost loop and the rest of the iterators from 
left to right

• Once the ordering is available:
1. Test to see if the loop carries a scalarization dependence. If not, then 

proceed to the next loop.
2. If the scalarization loop carries only true dependences, reverse the loop 

and proceed to the next loop.
3. Apply input prefetching, with loop splitting where appropriate, to eliminate 

dependences to which it applies. Observe, however, that in outer loops, 
prefetching is done for a single submatrix (the remaining dimensions). 

4. Otherwise, the loop carries a scalarization fault that requires temporary 
storage. Generate a scalarization that utilizes temporary storage and 
terminate the scalarization test for this loop, since temporary storage will 
eliminate all scalarization faults.
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Outer Loop Prefetching

  A(1:N, 1:N) = 

    (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0

• If we try to scalarize this (keeping the column iterator in the 
innermost loop) we get a true scalarization dependence (<, >) 
involving the second input and an antidependence (>, <) 
involving the first input

• Cannot use loop reversal...
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Outer Loop Prefetching
  A(1:N, 1:N) = 

   (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0

• We can use input prefetching on the outer loop. The 
temporaries will be arrays:

  T0(1:N) = A(2:N+1, 0)

  DO j = 1, N-1

    T1(1:N)=( A(0:N-1, j+1) + T0(1:N) ) / 2.0

    T0(1:N) = A(2:N+1, j)

    A(1:N, j) = T1(1:N)

  ENDDO

  T1(1:N) = ( A(0:N-1, N) + T0(1:N) ) / 2.0

  A(1:N, N) = T1(1:N)

• Total temporary space required = 2 rows of original matrix

• Better than storage required for copy of the result matrix
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Loop Interchange
• Sometimes, there is a tradeoff between scalarization and 

optimal memory hierarchy usage
 A(2:100, 3:101) = A(3:101, 1:201:2)

• If we scalarize this using the prescribed order:
  DO I = 3, 101

    DO 100 J = 2, 100

      A(J,I) = A(J+1,2*I-5)

    ENDDO

  ENDDO

• Dependences (<, >) (I = 3, 4) and (>, >) (I = 6, 7)

• Cannot use loop reversal, input prefetching

• Can use temporaries
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Loop Interchange
• However, we can use loop interchange to get:

  DO J = 2, 100

    DO I = 3, 101

      A(J,I) = A(J+1,2*I-5)

    ENDDO

  ENDDO

• Not optimal memory hierarchy usage, but reduction of 
temporary storage

• Loop interchange is useful to reduce size of temporaries

• It can also eliminate scalarization dependences
26



General Multidimensional Scalarization
• Goal: To vectorize a single statement which has m vector 

dimensions 
—Given an ideal order of scalarization (l1, l2, ..., lm) 

— (d1, d2, ..., dn) be direction vectors for all plausible and implausible 
true dependences of the statement upon itself

—The scalarization matrix is a n × m matrix of these direction 
vectors

• For instance:
   A(1:N, 1:N, 1:N) = A(0:N-1, 1:N, 2:N+1) + 

            A(1:N, 2:N+1, 0:N-1)

     
           >            =            <
             <       >  =
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General Multidimensional Scalarization
• If we examine any column of the direction matrix, we can 

immediately see if the corresponding loop can be safely 
scalarized as the outermost loop of the nest:
—If all entries of the column are = or >, it can be safely scalarized 

as the outermost loop without loop reversal.
—If all entries are = or <, it can be safely scalarized with loop 

reversal.
—If it contains a mixture of < and >, it cannot be scalarized by 

simple means.
– Loop skewing could work

28



• Once a loop has been selected for scalarization, the dependences 
carried by that loop, any dependence whose direction vector does not 
contain a = in the position corresponding to the selected loop may be 
eliminated from further consideration.

• In our example, if we move the second column to the outside, we get:

       >    =    <             =    >    < 

      <    >    =       >    <    =

• Scalarization in this way will reduce the matrix to:

                   >   <

General Multidimensional Scalarization
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Scalarization Example
  DO J = 2, N-1

     A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) + 

                  A(2:N-1,J-1) + A(2:N-1,J+1)/4.

  ENDDO

• Loop carried true dependence, antidependence

• Naive compiler could generate:
  DO J = 2, N-1

    DO i = 2, N-1

      T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1) )/4

    ENDDO

    DO i = 2, N-1

      A(i,J) = T(i-1)

    ENDDO

  ENDDO

• 2 × (N-2)2 accesses to memory due to array T
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Scalarization Example
• However, can use input prefetching to get:
  DO J = 2, N-1

    tA0 = A(1, J)

    DO i = 2, N-2

      tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4

      tA0 = A(i-1, J)

      A(i,J) = tA1

    ENDDO

    tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4

    A(N-1,J) = tA1

  ENDDO

• If temporaries are allocated to registers, no more memory accesses 
than original Fortran 90 program
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Post Scalarization Issues
• Issues due to scalarization:

—Generates many individual loops
—These loops carry no dependences. So reuse of quantities in 

registers is not common

• Solution: Use loop interchange, loop fusion, unroll-and-jam, and 
scalar replacement
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