
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 6 12 September 2013

2

Acknowledgments!
•  Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
— http://www.cs.rice.edu/~ken/comp515/

3 Copyright, 1996 © Dale Carnegie & Associates, Inc.

Dependence Testing!

Allen and Kennedy, Chapter 3 (contd)

4

The General Problem!
DO i1 = L1, U1!
!DO i2 = L2, U2!
! ! !...	

! !DO in = Ln, Un!
 S1 ! !A(f1(i1,...,in),...,fm(i1,...,in)) = ...	

 S2 ! !... = A(g1(i1,...,in),...,gm(i1,...,in))!
! !ENDDO!

! !...!

!ENDDO!

ENDDO!
!

Under what conditions is the following true for iterations α and β ?	

fi (α) = gi (β) for all i, 1 ≤ i ≤ m

Note that the number of equations equals the rank of the array, 	

and the number of variables is twice the number of loops that enclose both

array references (two iteration vectors)	

4

5

Index Set Splitting!
DO I = 1,100!

! !DO J = 1, I!

S1! !A(J+20) = A(J) + B!

! !ENDDO!

ENDDO!

!

For values of

there is no dependence carried by loop J
 !

I <
d − U0 − L0()
U1 − L1

=
20 − −1()

1
= 21

5

6

Index Set Splitting!
•  This condition can be used to partially vectorize S1 by Index

set splitting as shown
! !DO I = 1,20!
! ! !DO J = 1, I!

S1a! ! !A(J+20) = A(J) + B!

! ! !ENDDO!

! !ENDDO!

!!

DO I = 21,100!

! ! !DO J = 1, I!

S1b! ! !A(J+20) = A(J) + B!

! ! !ENDDO!

!ENDDO!

!

Now the inner loop for the first nest can be vectorized

6

7

Coupling makes these tests imprecise!
!DO I = 1,100!

! ! !DO J = 1, I!

S1! ! !A(J+20,I) = A(J,19) + B!

! ! !ENDDO!

!ENDDO!

•  We will report dependence even if there isn’t any
•  But such cases are very rare

8

Breaking Conditions!
•  Consider the following example
! !DO I = 1, L!

S1! ! !A(I + N) = A(I) + B!

! !ENDDO!

•  If L<=N, then there is no dependence from S1to itself

•  L<=N is called the Breaking Condition

9

Using Breaking Conditions!
•  Using breaking conditions the compiler can generate

alternative code
! !IF (L<=N) THEN!
! ! !A(N+1:N+L) = A(1:L) + B!

! !ELSE!

! ! !DO I = 1, L!

S1! ! ! !A(I + N) = A(I) + B!

! ! !ENDDO!

! !ENDIF!

10

Restatement of Dependence Analysis
Problem!

•  General Dependence:
— Let (D1, D2, …, Dn) be a direction vector, and consider the

following loop nest

 DO i1 = L1, U1 !!

!! !! !DO i2 = L2, U2 ! ! ! ! ! ! !

! ! ! !… ! ! ! ! ! !
! ! !

! ! ! !DO in = Ln, Un ! ! ! ! ! !

! !S1 ! ! !A(f(i)) = … ! ! ! ! !

! !S2 ! ! !… = A(g(i))

 ENDDO!
! ! ! !… !

! ! !ENDDO!

Then S2 δ S1 if f(x) = g(y) can be solved for iteration vectors x,y
that agree with D.

11

h(x1, x2 ,..., xn, y1,y2 ,..., yn) = f (x1, x2, ..., xn ,y1,y2 , ..., yn) − g(x1,x2, ..., xn ,y1,y2, ..., yn) = 0

The General Case!
•  We must relax our restrictions on f and g to let them be

arbitrary functions.

•  A dependency exists if

•  has an integral solution
•  The above equation is known as a Diophantine equation.

•  We will also impose the constraint that the solution must occur
within loop bounds

12

•  For simplicity, assume that

•  Then, we’re looking for a solution of

•  Rearranging terms, we get the linear Diophantine Equation:

f (x) = a0 + a1x1 + ... + anxn
g(x) = b0 + b1y1 + ... + bnyn

h(x) = a0 − b0 + a1x1 − b1y1 + ... + anxn − bnyn = 0

a1x1 − b1y1 + ... + anxn − bnyn = b0 − a0

Linear Diophantine Equations!

f(x) = a0 + a1 x1 + …
g(y) = b0 + b1 y1 + …

h(x,y)

13

Linear Diophantine Equations & GCD Test!
•  A basic result tells us that there are values for x1,x2,

…,xn,y1,y2,…,yn so that

 What’s more, gcd(a1,…,an,b1,…,bn) is the smallest number this
is true for.

•  As a result, the equation has a solution iff gcd(a1,…,an,b1,…,bn)
divides b0 - a0
—  But the solution may not be in the region (loop iteration values) of

interest

•  Exercise: try this result on the A(4*i+2) & A(4*i+4) example

a1x1 − b1y1 + ... + anxn − bnyn = gcd(a1, ..., an, b1, ..., bn)

13

14

Real Solutions!
•  Unfortunately, the gcd test is less useful then it might seem.
•  Useful technique is to show that the equation has no solutions

in region of interest ==> explore real solutions for this purpose
•  Solving h(x) = 0 is essentially an integer programming problem.

Linear programming techniques are used as an approximation.

•  Since the function is continuous, the Intermediate Value
Theorem says that a solution exists iff:

€

minR h ≤ 0 ≤maxR h

15

Banerjee Inequality!
•  We need an easy way to calculate minR h and maxR h.

•  Definitions:

•  a+ and a- are both >= 0 and are called the positive part and
negative part of a, so that a = a+ - a-

€

hi
+ =maxRi h(xi,yi)

€

hi
− =minRi h(xi,yi)

a+ =
a a ≥ 0
0 a < 0
"

$

a− =
a a < 0
0 a ≥ 0

$
%

15

16

Banerjee Inequality!
•  Lemma 3.2. Let t,l,u,z be real numbers. If l <= z <= u,

then

 Furthermore, there are numbers z1 and z2 in [l,u] that make
each of the inequalities true.

Proof: In the book.

−t −u + t +l ≤ tz ≤ t +u − t −l

17

Banerjee Inequality!
•  Definitions:

— Hi
-(<) = -(ai

- + b)+(Ui -1) + [(ai
- + bi)- +ai

+]Li - bi

— Hi
+(<) = (ai

+ - bi)+(Ui- 1) - [(ai
+ - bi)++ ai

-]Li- bi

— Hi
-(=) = -(ai - bi)-Ui + (ai - bi)+Li

— Hi
+(=) = (ai - bi)+Ui - (ai - bi)-Li

— Hi
-(>) = -(ai - bi)-(Ui - 1) + [(ai - bi

+)+ + bi
-]Li + ai

— Hi
+(>) = (ai + bi)+(Ui - 1) - [(ai + bi

-)- + bi
+]Li + ai

— Hi
-(*) = ai

-Ui
x + ai

+Li
x - bi

+Ui
y + bi

-Li
y

— Hi
+(*) = ai

+Ui
x - ai

-Li
x + bi

-Ui
y - bi

+Li
y

18

Banerjee Inequality!
•  Now for the main lemma:
•  Lemma 3.3: Let D be a direction vector, and h be a

dependence function. Let hi(xi,yi) = aixi -biyi and Ri be as
described above. Then hi obtains its minimum and maximum on
Ri, and we have

min Ri hi = hi
− = Hi

−(Di)

max Ri hi = hi
+ = Hi

+(Di)

19

Banerjee Inequality!
•  Proof of 3.3:

 We must check for all cases of Di .

 If Di = ‘=‘, then xi=yi and hi=(ai-bi) xi. We clearly satisfy the hypothesis of
lemma 3.2, so

 Furthermore, hi actually obtains these bounds by lemma 3.2. Thus, the result
is established.

−(ai − bi)
−Ui + (ai − bi)

+ Li = Hi
−(=) ≤ h ≤ (ai − bi)

+Ui − (ai − bi)
− Li = Hi

+(=)

20

Banerjee Inequality!
 If Di = ‘<“, we have that Li <= xi < yi <= Ui. Rewrite this as Li <= xi
<= yi -1 <= Ui - 1 in order to satisfy the conditions for lemma 3.2.
Also, rewrite h as

 Then, we can use 3.2 to first minimize aixi and get:

 Minimizing the bi(yi-1) term then gives us:

 The other cases are similar.

hi = aixi − biyi = aixi − bi(yi −1) − bi

−ai
−(yi −1) + ai

+Li − bi(yi −1) − bi ≤ hi ≤ ai
+(yi −1) − ai

−Li − bi(yi −1) − bi

−(ai
− + bi)

+(Ui −1) + (ai
− + bi)

− Li + ai
+ Li − bi = Hi

−(<) ≤ hi
≤ (ai+ − bi)+(Ui −1) − (ai+ − bi)− Li − ai− Li − bi = Hi

+(<)

20

21

Banerjee Inequality!
•  Theorem 3.3 (Banerjee). Let D be a direction vector, and h be

a dependence function. h = 0 can be solved in the region R
iff:

 Proof: Immediate from Lemma 3.3 and the IMV.

Hi
−(Di) ≤ b0 − a0 ≤

i=1

n

∑ Hi
+(Di)

i=1

n

∑

22

Example!
DO I = 1, N!

 DO J = 1, M!

 DO K = 1, 100!

 A(I,K) = A(I+J,K) + B!

 ENDDO!

 ENDDO!

ENDDO!

Testing (I, I+J) for D = (=,<,*):

!

!

!

This is impossible, so the dependency doesn’t exist.!

H1
−(=) + H2

−(<) = −(1− 0)−N + (1−1)+1 − (0− +1)+(M −1) + [(0− +1)− + 0+]1− 1 = −M ≤ 0
≤ H1

+(=) + H2+ (<) = (1 −1)+ N − (1 −1)−1+ (0+ −1)+ (M − 1) − [(0+ −1)− + 0−]1 −1 ≤ −2

22

23

Homework #2 (Written Assignment)!
•  Solve exercise 3.2 in book

— As before, dependence “type” refers to flow/anti/output

•  Due in class on Sep 24th
— Honor Code Policy: All submitted homeworks are expected to be the

result of your individual effort. You are free to discuss course material
and approaches to problems with your other classmates and the
professors, but you should never misrepresent someone else’s work as
your own. If you use any material from external sources, you must
provide proper attribution.

Course Project Logistics!
•  Goal of course project is to perform an in-depth study of a

research problem related to the course
— Should include a theoretical component
— Practicality can be demonstrated by hand-coded source-to-source

transformations

•  We will assign you a senior PhD student or research scientist as
a mentor for your project
— Kumud, Anitha – Mentor: Rishi Surendran
— Nick, Sriraj, Yiwei – Mentor: Zoran Budimlic

•  September 17 & 19 are self-study days for you to meet with
your mentor and develop your project proposal (due by Sep 20)

•  Final project presentations scheduled in class on Dec 3 & 5

Worksheet 1 (to be done in groups)!
DO I = 1, N
S1 A(4*I+2) = …

S2 … = A(4*I+4)
ENDDO

•  Use the GCD test to determine whether there is a dependence between S1
and S2

