
Comp 311
Functional Programming

Lecture 1
Robert “Corky” Cartwright

Rice University

Robert “Corky” Cartwright
• PhD, semantics and verification of (first–order) functional programs

• Stanford 1976[1977]
• Official Advisor: David Luckham
• Primary Mentor: John McCarthy

• 45+ years of Computer Science research
• PL theory

• First-order Programming Logic
• Semantics of types, sequential functional languages
• Type systems (Soft typing)

• PL systems (software engineering)
• Soft type checker for Scheme
• Testing concurrent programs
• DrJava including Functional Java Subset

2

Course Overview I

• An Introduction to Functional Programming

• Lectures: Tuesdays and Thursdays: 9:40am – 11:00am

• Office hours: Corky (Online)

[in normal times Duncan Hall 3104]

• Tuesdays and Thursdays 1:30pm – 2:30pm

• By appointment

3

Course Mechanics
• Course website: Fall 2020 link at https://comp311.rice.edu

• Syllabus and lectures posted here
• Lecture topics are subject to change

• Piazza: https://piazza.com/rice/fall2020/comp311
• Course announcements and Q&A forum
• Homework assignments and practice exams posted here

• Grading
• 50% Homework Assignments
• 25% Mid-term
• 25% Final
• Extra credit points on exams, some assignments

4

https://comp311.rice.edu/
https://piazza.com/rice/fall2020/comp311

Course Overview II
• No required textbook purchase

• We will draw from a variety of sources including free
online textbooks and monographs. Some of them
are available for purchase in printed form from online
bookstores.

• Coursework consists primarily of weekly homework
assignments that are either short programming
assignments or written assignments about the
underlying theory

• Make sure you do these! They embody the key ideas
and principles covered in the course.

5

Homework Assignments

Think of the programming assignments in this class as
very short essays. Focus as much on style as you would
for an essay.

50% of a homework grade is based on clarity and style

50% on correctness

6

Homework Assignments
• Projects are due one week after being assigned.

• Each student has 7 “slip days” to address scheduling conflicts
and minor sickness. No more than 3 “slip days” can be used on
a given assignment unless you get explicit permission from the
instructor.

• Hoard your slip days. The assignments will be progressively
more challenging. I predict that some students will not use any
slip days.

• Expect to spend about 10 hours outside of class per week.

• Block this time off now in your schedule and respect these
commitments.

7

Homework Assignments

• Assignments are published on Thursdays.
• Start on assignments early so that you have

time to ask questions in class, on Piazza, and
at office hours.

• A positive attitude and tackling assignments
early will help you do your best in the
course.

8

Homework Assignments
• All assignments will be small in scale.
• Most will be given in (the functional subset of) Racket

which is a very simple, pure functional language that is
easy to simulate in modern type-safe languages like Java,
C#, SmallTalk, and Javascript (particularly TypeScript). We
will document Racket programs with types. There is an
advanced Racket with a “gradual” type system but I
disagree with the details if not the spirit.

• We will show how to simulate functional programming in
Java, exposing most of the technology used to implement
Scala (and perhaps Swift).

• We will also write some programs in Haskell so you are
well-equipped to use it as a software engineer.

9

Homework Assignments
• I strongly recommend that you use the DrRacket programming

environment to develop and test Racket programs. The Racket
platform runs on Windows, MacOSX, and Linux. If you have a
Chromebook, I suggest that you run Linux on it.

• For Java, you have the option of using DrJava or a professional IDE
like IntelliJ IDEA or Eclipse but I only use DrJava so I won’t be able
to answer questions about the professional IDEs.

• I am still researching Haskell platforms but I am leaning toward
Visual Studio Code plus a few plugins. IntelliJ is another possibility.

• We will use SVN (turnin on CLEAR) for all assignments.
• Instructions on the course website:

https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide
Trick for reaching website if you have forgotten the URL (like I do): enter
comp311.rice.edu and follow the Fall 2020 link.

Pause!
10

https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide

What is Functional
Programming?

11

Early Models of Computation
• Turing Machines (Turing)
• Type-0 Grammars (Chomsky)
• The Lambda Calculus (Church)
• Post Machines (Post)

The creators of these models were surprised when they all turned out to be
equivalent if computations are confined to functions mapping finite inputs
to finite outputs. Now we understand that the notion of computability is
an utterly fundamental notion in mathematics.

With exception of Lambda Calculus, all of these models are “bottom-up”
frameworks for pushing bits or symbols. But even the Lambda Calculus
had a grubby syntactic character because there was no model based on
defining and applying functions. It was a vision, an intuition until Scott
supplied a truly functional model that could handle self-application and
support an isomorphism between D and D -> D.

12

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power.

• Suggests there is a deeper structure to the nature of
computation.

13

The Lambda Calculus

• A calculus consists of a set of rules for rewriting symbols.
• An attempt to rebuild all of mathematics on the notion of functions and

applications.
• There is no mutation in the lambda calculus.
• Every program consists solely of applications of functions to arguments

(which are also functions in the pure lambda calculus, a misleading
restriction IMO)

• Applications of functions return values (which are also functions)
• Encoding numbers as functions does not work out well; in the pure

lambda calculus, numbers are actually encoded as syntactic descriptions
of functions. Equality of functions is undecidable.

• The Pure Lambda Calculus was a critical step in the right direction but
it was NOT a true functional programming language. If you add a few
constants (nats, suc, if-zero conditional expressions), you get PCF which
is a true universal functional programming language. But even PCF is
incomplete in fundamental (if practically unimportant) ways.

14

What is Functional
Programming?

The Pure Lambda Calculus plus critical constants including
the natural numbers.

It is possible (albeit not necessarily desirable) to eliminate
variables! Such a combinatory language is unnatural unless

15

What is Functional
Programming?

• A style of programming that avoids side effects

• Many applications include operations that are purely
functional (no mandated side effects)

BuyCredit Card # Digital Book

Card Charged

16

What is Functional
Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged
Side Effect

17

What is Functional
Programming?

• A style of programming that avoids side effects

b

• All results of a computation are sent as output

BuyCredit Card #
(Digital Book,
Charge Event)

18

Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions between

program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read and
understood in isolation

• Programs are easier to test: Less context needs to be built up before
calling a function to test it

• Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic and local.

• Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler; it is
ordinary algebra plus induction on the structure of the data.

19

Why Avoid Side Effects?

• Programs are easier to execute in parallel: Because
separate pieces of a computation do not interact, it is
easy to compute them on separate processors

• This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

• This advantage undermines an often cited argument for
mutation (efficiency)

20

What is Functional Programming?

• A style of programming that emphasizes functions as
the basis of computation

• Functions are applied to arguments

• Functions may be passed as arguments to other
functions

• Functions may be returned as values of applications

Pause!

21

Why Emphasize Functions?
• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is DRY important?

• Program understanding

• Program maintenance

• Passing functions as arguments is often the most
straightforward way to abide by DRY

• Returning functions as values is also important for DRY
22

Why Emphasize Functions?

• Functions allow us to concisely package computations
and move them from one control point to another

• Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

• Reasoning about sequential programs is easier

Equational reasoning + induction

23

A Word on Object-Oriented Programming

• There is no tension between functional and object-
oriented programming. In fact, OOP can be cast as an
enrichment of FP. See

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another.

• Languages like Scala and Swift are designed to
integrate both styles of programming

Pause!

24

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

Quick Start with Racket

To install Racket on Windows, MacOsX, or Linux,

• Go to https://racket-lang.org/download/ and download
the “regular” version of Racket.

• Execute the downloaded installation file.

• Play with Racket arithmetic and simple functions on
numbers. Racket performs rational arithmetic until
forced to use inexact approximations.

25

https://racket-lang.org/download/

