
1

Generative (Non-structural) Recursion

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2020 2

The Recipe Until Now

• Data analysis and design using structural

recursion templates (with minor cheating)

• For each function in the design (visible

interface)

• Contract, purpose

• Examples (stated as tests)

• Template Instantiation

• Precisely followed the structure of the data we consume

• Using this template, we can do "almost everything”

• Testing

COMP 311, Fall 2020 3

Structural Recursion

• Is the best problem-solving strategy
• For the vast majority of functions over recursive

data.

• Yields satisfactory efficiency in most cases.

• Cannot, in principle, compute all computatble
functions. Why not? Only primitive recursion!

• Ill-suited to an important class of problems
that technically can be solved using structural
recursion but can be solved more cleanly and
efficiently using non-structural methods.

COMP 311, Fall 2020 4

Non-structural Functional

Programs

• Best explained by presenting some

examples before discussing the general

template.

Problem: efficiently sort a list of numbers

Good solutions: merge-sort, quicksort

COMP 311, Fall 2020 5

Merge Sort

• Not going to present the actual program; you
can do it as a “finger exercise” using the
merge function you wrote for Assignment 2
and a modest amount of additional code.

• Idea:
• Base case: list of length 0 or 1

• Inductive case:
split the list into two (almost) equal parts
sort each part
merge the two results

Why non-structural?

COMP 311, Fall 2020 6

Quick Sort

• Invented by C.A.R. ("Tony") Hoare

• Functional version is derived from the
imperative (destructive) algorithm; less
efficient but still works very well

• Idea:
• Base case: list of length 0 or 1

• Inductive case:
• partition the list into the singleton list containing first, the

list of all items <= first, and the list of all items > first

• sort the the lists of lesser and greater items

• return (sorted lesser) + (first) + (sorted greater) where +
means list concatenation (append)

COMP 311, Fall 2020 7

Quicksort Breaks Structural Template

(define (qsort l)

(cond [(empty? l) empty]

[else

(local ((define pivot (first l))

(define other (rest l)))

(append

(qsort [filter (lambda (x) (<= x pivot)) other])

(list pivot)

(qsort [filter (lambda (x) (> x pivot)) other])))]))

COMP 311, Fall 2020 8

Quicksort Still Terminates

(define (qsort l)

(cond [(empty? l) empty]

[else

(local ((define pivot (first l))

(define other (rest l)))

(append

(qsort [filter (lambda (x) (<= x pivot)) other])

(list pivot)

(qsort [filter (lambda (x) (> x pivot)) other])))]))

Why?

COMP 311, Fall 2020 9

Not so quick sort

(define (qsort l)

(cond [(empty? l) empty]

[else

(local ((define pivot (first l)))

(append

(qsort [filter (lambda (x) (<= x pivot)) l])

(qsort [filter (lambda (x) (> x pivot)) l])))]))

What if (first l) is the largest element in l?

COMP 311, Fall 2020 10

A More General Recipe

• Data analysis and design

• Contract, purpose, header

• Examples

• Template Instantiation

• A bit more flexible than before (non-structural)

• Explicit termination argument

• typically a well-founded measure of the argument list that

strictly decreases

• Testing

COMP 311, Fall 2020 11

Generative Template

(define (gen-recursive-fun problem)

(cond

[(trivially-solvable? problem)

(determine-solution problem)]

[else

(combine-solutions

... problem ...

(gen-recursive-fun (gen-problem-1 problem))

…

(gen-recursive-fun (gen-problem-n problem)))]))

COMP 311, Fall 2020 12

Sample termination argument

• Quicksort terminates because each recursive
call (qsort l) reduces the metric (length l).
In particular, both
[filter (lambda (x) (<= x pivot)) other] and
[filter (lambda (x) (> x pivot)) other]

are proper sublists of other which is shorter than l

• Without such an argument a non-structural
program must be considered incomplete.

COMP 311, Fall 2020 13

General framework for proving termination

• Devise a metric (a size function) with some familiar

well-founded structural type as the output (usually

nat) for the problem and show that each recursive

call involves a smaller problem than the original

one.

• In pathological cases, this ordering may require the

use of lexicographic ordering on n-tuples (or

unbounded sequences) of data values. These

pathologies are rare in practice. Not aware of a

single occurrence in DrJava code base.

COMP 311, Spring 2009 14

Precise Termination Arguments

Binary search fallacy

If we start with an interval S wide, then we only need

limited number of steps to reach an interval R wide. In

particular, the intervals will proceed as S, S/2, S/4,

..., and will reach size smaller than R in log2 (R/S)

steps. We are engaging in perilous handwaving,

because when S reaches 2, the details involving

comparison (<, <=) and interval representation are

critical. Sloppy reasoning/coding leads to non-

termination.

COMP 311, Fall 2020 15

Why Generative Recursion?

• What if we can choose between

• a structural solution and

• a generative solution?

• Often, the second is much faster

• Sorting

• Simpler example from book: greatest-common-divisor (GCD)

gcd(6,9)=3, gcd (99, 18) = 9, etc.

structural version so brain-damaged I could not follow the

narrative. I had to infer what the code did.

Rant: local functions in book often have no contracts!

• Even better example: searching an ordered list where direct

access has constant cost, e.g., an array. (Binary Search)

COMP 311, Fall 2020 16

Are all data types structural?
• Structural => well-founded? Not necessarily if structure can be infinite.

• Reasoning about limit points (infinite objects) is a technically hard question.

• If we avoid infinite trees, the answer is yes! But we cannot completely avoid infinite

trees. Infinite trees (or similar infinite constructions) are required to formalize some

forms of data like functions, real numbers, and infinite streams.

• Question: Is the structural ordering always useful in proving properties of a type? In

my view, yes. But structurally inductive reasoning becomes delicate because passing

to the limit (reasoning about infinite objects can be delicate). Fixed-point induction

works tolerably well. Co-induction is another option, but not to my personal taste.

• How do we define the domain of functions A B? The standard answer is non-

structural and non-computational. Dana Scott (in 1970) showed how A B can

be defined computationally with (in my view) astounding consequences, namely the

cardinality of A B never exceeds the continuum (real numbers). This subject

(“domain theory”) is even beyond Comp 411.

• It is possible (but technically difficult) to formalize all forms of program data including

computable functions (with the natural approximation ordering) with only well-founded

orderings.

COMP 311, Fall 2020 17

Some Generative Algorithm Families

• Sorting and Searching

• Mathematical iteration: bisection, Newton's
method.

• Backtracking (traversing a maze, 8
queens)

• Dynamic Programming (memoization)

Generally the structural algorithms are so
trivial that they typically aren't discussed as
algorithms. Nothing interesting to say.

COMP 311, Fall 2020 18

The Tradeoff (if we can chose)

• How do we chose between
• a structural solution and

• a generative solution?

• Speed vs. clarity (structural recursion); speed often
wins in practice. Termination proofs are usually easy.

• In some cases, there is no credible structural
algorithm. The structural algorithm(s) may be goofy.

• Chapter 26 in HTDP has a very nice example

• Greatest-common-divisor (GCD)

gcd(6,9)=3, gcd (99, 18) = 9, etc.

