
1

Lazy Evaluation or Non-strict Constructors

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2020 2

Some Basic Definitions

• The element (called bottom) implicitly exists in all data types (domains)

because we can write a divergent function of any type using recursion. What

does evaluate to? Nothing! It diverges. is not a value! In contrast to an

error, does not appear as an discrete event during evaluation.

• Many computer scientists (following logicians like Kleene) prefer to leave

divergence implicit and only talk about total functions (functions that never

diverge). This is a widely held point-of-view. The logical framework Coq for

specifying the behavior of programs and proving their properties (correctness)

only supports total functions.

• I dissent from this view. Functional programs inherently define partial functions.

Some of them (most of the ones we use in practice) are total (assuming we

consider errors as legal return values). It is easy to take logical theories of

computational domains (e.g., Peano’s axioms for the natural numbers) and

slightly revise them to include and errors.

COMP 311, Fall 2020 3

Strictness
• A conventional primitive function that evaluates all of its arguments is

strict: if it diverges if any of their arguments are (ignoring aborting
errors).

• If we include aborting errors, a conventional primitive function that
evaluates all of its arguments is error-strict: if an argument ai diverges or
returns an aborting error element and all preceding arguments evaluate to
non-error elements, then the function returns the result of evaluating ai.

• Conventional constructors (as in Racket define-struct) are
conventional primitive functions.

• Lazy constructors are not conventional constructors. Moreover, they
never diverge or return elements. (Note: I am confining my attention to
constructors that are non-strict in all arguments. Some constructors are
only lazy in selected argument positions.)

• An n-ary lazy constructor c takes n argument expressions M1, …, Mn and
leaves them unevaluated. It returns a value c(M1, …, Mn) called a lazy
value or a lazy construction. Programming languages differ on whether
they support equality of lazy constructions.

COMP 311, Fall 2020 4

Lazy data types (domains)

• Every lazy constructor c has an associated type (unimaginatively

called) c consisting of the elements

 c(v1). …, c(vn)

• where v1 …, vn are arbitrary Lazy Racket values.

In statically typed languages, each vi is restricted to a specified

type.

• But there is a catch. Values are closed under infinite ascending

chains of finite values where the ordering is tree approximation.

A finite tree approximates itself and any elaboration (replacing of

bottom by a value) of itself where a bottom is replaced by

another value.

COMP 311, Fall 2020 5

Lazy data types (domains)

• Every lazy constructor c has an associated type (unimaginatively

called) c consisting of the elements

 c(v1). …, c(vn)

• where v1 …, vn are arbitrary Lazy Racket values.

In statically typed languages, each vi is restricted to a specified

type.

• But there is a catch. Values are closed under infinite ascending

chains of finite values where the ordering is tree approximation.

A finite tree approximates itself and any elaboration (replacing of

bottom by a value) of itself where a bottom is replaced by

another value.

COMP 311, Fall 2020 6

Lazy Racket and LazyRacket

• In DrRacket, the definition of Lazy Racket (available as an

“experimental” language is a mess from a semantic point-of-view, i.e., its

reduction semantics is quirky and requires introducing faux constructors.

• Problem every define operation wraps its right hand side in delay,

which is a unary lazy faux constructor with force as its field name. The

cons constructor is unchanged except for implicitly wrapping its

arguments with delay. Explicit use of the delay operation is an ugly

hack, but it was done for the sake of compatibility with ordinary Racket.

• In its place, we are going to define LazyRacket for purposes of hand

evaluation only. In LazyRacket, lambda abstractions are call-by-name

and cons is truly lazy. The reduction semantics for LazyRacket is

identical to that for ordinary Racket except for beta-reduction rules, the

rules for reducing applications primitive operations cons, first, and

rest, and a small change to the definition of values.

COMP 311, Fall 2020 7

LazyRacket Semantics

• The beta-reduction rule in LazyRacket is:

((lambda (x1 … xn) E) M1 … Mn) => E[M1 for x1] . . . [Mn for x_n]

where E[M1 for x1] . . . [Mn for x_n]
means E with all free occurrences of

x1 … xn replaced by M1 … Mn. We duck the complication of safe-

substitution by prohibiting the reuse of variable names bound in the

sequence of define operations at the beginning of a program. (Recall

Problem 5 on Homework 3.) In other words, variables that are bound by

define must be unique. This reduction rule is the beta-reduction rule

from the classic lambda calculus.

• There only other changes from the evaluation rules for Core Scheme

are described on the next slide.

COMP 311, Fall 2020 8

LazyRacket Semantics cont.

• The definition of value differs in one respect, namely

that all applications of the form

(cons M1 M2)

are values.

• The reduction rules for first and rest are revised to

match this change in the definition of values:

(first (cons M1 M2)) => M1
(rest (cons M1 M2)) => M2

• Nothing else changes from Core Racket!

COMP 311, Fall 2020 9

Examples
• Problem 1 from HW03

(and false (/ 1 0)) => false

=> false

• Problem 2 from HW03
(define AND (lambda (x y) (if x y false)))

(AND false (/ 1 0))

=> ...

((lambda (x y) (if x y false)) false (/ 1 0))

=> (if false (/ 1 0) false)

=> false

• These examples only show the differences between

call-by-name and call-by-value beta reduction.

COMP 311, Fall 2020 10

More Examples
Simple example involving lazy primitive operations

(define zeros (cons 0 zeros))

(first zeros)

=> ...

0

What would this program mean in Core Racket

(define zeros (cons 0 zeros))

(first zeros)

=> run-time error: zeros is undefined

Why? The meaning of cons is different!

COMP 311, Fall 2020 11

More Examples cont.

Simple example involving lazy primitive operations

(define zeros (cons 0 zeros))

(rest zeros)

=> ...

(rest (cons 0 zeros))

=> ...

zeros

=> ...

(cons 0 zeros)

