
1

Techniques for Supporting Lazy Evaluation

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2020 2

Approaches to Hacking Lazy Evaluation

• Mainstream programming languages discourage the use of lazy evaluation by using call-

by-value argument passing in methods/procedures, the primary mechanism for defining

new program operations.

• There are good software engineering justifications for this bias. Supporting a coherent,

intellectually tractable formulation of call-by-name argument passing requires a truly

radical language design like Haskell, but this design is so radical that all data constructors

are lazy by default! Call-by-name and mutation interact with horrible results. Modern

languages with the exceptions of Haskell which has no mutation and Scala where the

inclusion of support for call-by-name is really an implicit admission that this language is

“For Experts Only”.

• Nevertheless, there are straightforward ways to “hack” support for lazy evaluation in many

mainstream languages.

• Manual use of thunks (suspensions) and evaluation (forcing) which is notationally
painful.

• Macros (the only notationally clean way to do it)

COMP 311, Fall 2020 3

Using Thunks to Defer Evaluation

• In Racket, what construct suppresses evaluation of program text? In fact,

this property holds for all languages that provide reasonable support for

functions as data.

Explicitly encapsulate the program text for evaluation later. How can we

do this?

By making the program text the body of a function of no arguments (in ML

a unary function that takes the degenerate type Unit) that we can

evaluate on demand.

• To make the Racket cons operation effectively lazy, we pass it the

arguments (lambda () M) and (lambda () N) instead of M and N. How do

we observe the values of the first and rest portions of such a list l? By

evaluating ((first l)) and ((rest l)). If the rest has been constructed

using laziness, all that ((rest l)) evaluates is N which performs an

effectively lazy cons by wrapping its two arguments in thunks.

COMP 311, Fall 2020 4

Improving the Ugly Notation

• Wrapping all argument to lazy constructions in thunks and

explicitly applying all of the values embedded in such

constructions using application (to no arguments, except in ML

languages where the application is to the degenerate unit value)

is ugly, ugly, …

• The workaround: define lazy constructors as macros that expand

to the corresponding strict constructor composed with thunk

wrapping for each argument.

• What is a macro? A rule performed by the compiler that expands

a macro invocation (which typically looks just like a function

application) into standard language code that actually

implements the macro operation.

COMP 311, Fall 2020 5

Example: a Racket Macro for Lazy cons

• The workaround: define lazy constructors as macros that expand lazy

constructor applications to application of the corresponding strict

constructor composed with thunk-wrapping each argument.

• What is a macro? A rule performed by the compiler that expands a

macro invocation (which typically looks just like a function application)

into standard language code that actually implements the macro

operation.

• Macros are under-utilized in modern languages because surface

(concrete) program syntax is so ugly and messy to manipulate. Strings

separated by varying amounts of whitespace. Ugh!

• Programs conceptually have an intelligible tree-based (abstract) syntax

that programmers never see. At this level macros are easy to express

and understand. The Racket/Scheme/Lisp family of languages is ideal

for macros because concrete syntax  abstract syntax.

COMP 311, Fall 2020 6

Example cont.

• Racket incorporates a very sophisticated macro system

• Simply macros are defined using the construct define-syntax-rule.

• To learn more about Racket macros, read the Chapter 16 of the Racket

Guide (bundled as part of your DrRacket installation) entitled Macros.

• Using define-syntax-rule, we can easily define lazy-cons, lazy-first,

and lazy-rest as follows:

#lang racket

(define-syntax-rule (lazy-cons f r)

(cons (lambda () f) (lambda () r)))

(define-syntax-rule (lazy-first lc) ((car lc)))

(define-syntax-rule (lazy-rest lc) ((cdr lc)))

Note: The standard dialect of Racket supports macros, while the HTDP

languages do not. Standard Racket requires the use of car and cdr

above instead of first and rest for technical reasons.

COMP 311, Fall 2020 7

Example cont.

• The simple functional code in our macros is not efficient because

it re-computes the values of expressions! (In a purely functional

language we never need to evaluate an expression more than

once! Why?)

• How do we avoid re-computation in functional languages?

• Factor out common sub-expressions using local

• If our functional language accommodates mutation

(Racket/Scheme/Lisp/ML except Haskell), we can use benign

mutation to cache values when factoring is insufficient (e.g., naïve

Fibonacci)

• Important optimization in many contexts, not just lazy evaluation.

COMP 311, Fall 2020 8

Memoization

• Most important manual optimization in functional programming, yet it

is not functional!

• Rule of thumb: mutation is OK if it is encapsulated!

• Such mutation is “assign once” changing unbound (often

represented by a default value such as 0 or empty) to a binding.

• In standard memorization, recursive calls are recorded in a table

(often a hash table) and function evaluation avoids performing the

same computation by consulting the table before executing the

body.

• We are going to take a glimpse at the core imperative features of

Racket in the next lecture, but you will not have to write any

imperative code in Racket; I find this form of optimization more

natural in the context of Java.

