
1

A Glimpse at Imperative Racket and Memoization

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2020 2

All Real “Functional” Languages Except

Haskell Support Imperative Operations

• Why do nearly all real “functional” languages include imperative

operations?

• The real world is imperative (changes state). The real world and many

conceptual models evolve (change state) over time. In computations

simulating these models, it is often convenient (and conceptually

economical to let execution recapitulate evolution. During the simulation of

the model, changes in the state of the model are represented by changes

in the current program state. Imperativity may be simpler in some cases.

• Our computer hardware is imperative. At some point, even pure functional

code must be executed on hardware where every computation step

(execution of a machine instruction) involves mutation. To produce efficient

machine code to solve a problem, we often need to describe the

computation in imperative terms. Most fast algorithms perform incremental

operations that are imperative.

COMP 311, Fall 2020 3

Functional Programming Culture

• Imperative computation must be clearly identified as such. When imperativity is used

“internally” to improve performance, it should be encapsulated when possible behind

APIs that are functional.

Examples:

• Memoization

• Fast imperative algorithms for solving problems which may have slower functional

equivalents

• Simulation of physical systems: the change in state over short time intervals is

typically small and the successor state in discrete is often a simple update to the

current state. In some cases, it is possible to preserve the old state and construct

the new state by sharing pieces of the previous state but many data structures (like

arrays) must be completely copied if the old state is to be preserved, compromising

the efficiency of the update operation. Essentially all physical simulations rely on

destructive updates. On the other hand, it may be convenient to build a complete

new representation particularly in the context of parallelism. Parallel execution

often required copying for the sake of data locality.

COMP 311, Fall 2020 4

FP Culture Continued

In Racket/Scheme

• Most mutation operations (at least those in libraries) end with a ! (read

“bang”) character. Matthias Felleisien loved to title the lecture introducing

the imperative extension of Scheme “The Big Bang!”

• Simulation of physical systems: the change in state over short time intervals

is typically small and the successor state in discrete is often a simple update

to the current state. In some cases, it is possible to preserve the old state

and construct the new state by sharing pieces of the previous state but

many data structures (like arrays) must be completely copied if the old state

is to be preserved, compromising the efficiency of the update operation.

Essentially all physical simulations rely on destructive updates. On the

other hand, it may be convenient to build a complete new representation

particularly in the context of parallelism. Parallel execution often required

copying for the sake of data locality.

Mutation Example

Naïve Fibonacci with Memoization
(define fib

(local

[(define results (make-hash)) ;; results is empty hash table

(define (fibHelp n)

(cond [(< n 2) 1]

;; if n is in the memo table, return the cached value

[(hash-has-key? results n) (hash-ref results n)]

[else ;; bind sum to fib(n)

(let [(sum (+ (fibHelp (- n 1)) (fibHelp (- n 2))))]

(begin

(hash-set! results n sum) ;; add <n,sum> to table

sum))]))]

fibHelp))

COMP 311, Fall 2020 5

Bottom Up Improvement

COMP 311, Fall 2020 6

Aside: Introducing local vars

Racket/Scheme supports three different forms of “let” (a common name

in functional langugaes for an expression that introduces new local

variables) that only differ on the text that is in the scope of the new

bindings

• (let [(x1 E1) … (xn En)] E)

• (let* [(x1 E1) … (xn En)] E)

• (letrec [(x1 E1) … (xn En)] E)

In all three constructs, the new local variables x1, …, xn are

“visible” in the body E. In let, the new local variables are “invisible”

(not in scope) in the right-hand-sides E1, …, En of the new local

bindings. In let*, each local variable xi is visible in subsequent right-

hand-sides Ei+1, …, En. In letrec, all local variable are visible (but not

necessarily defined) in all right-hand-sides E1, …, En.

COMP 311, Fall 2020 7

Observations About Various let forms

Ordinary let appears in most functional languages because it simply

abbreviates a lambda application:

(let [(x1 E1) … (xn En)] E)  ((lambda (x1 … xn) E) E1 … En)

The let* operation has a nearly trivial definition:

(let* [(x1 E1) … (xn En)] E) 

(let [(x1 E1)]

(let …

(let [(xn En)] E) … E) …))

which is how Java defines the meaning of a block of local bindings/

The letrec operation is alternate notation for local:

(letrec [(x1 E1) … (xn En)] E) 

(local [(define x1 E1) … (define xn En)] E)

which is how Algol-like languages define the meaning of a block of local bindings.

letrec is the most expressive of the three because it supports recursive
definitions. If you use fresh names for local variables, it subsumes the others.

COMP 311, Fall 2020 8

COMP 311, Fall 2020 9

Core Imperative Operations

• Assignment

(set! v E) rebinds variable v to the value of E

• Struct field mutation (except cons)

(<struct-name>-<field-name>! E1 E2)

changes the specified field in the struct determined

by E1 to the value of E2; if the value of E1 is not an

instance of the specified struct, an error is thrown

• Imperative sequencing

(begin E1 … En)

evaluates E1, … , En and returns the value of E

COMP 311, Fall 2020 10

Example: a Racket Macro for Lazy cons

• The workaround: define lazy constructors as macros that expand lazy

constructor applications to application of the corresponding strict

constructor composed with thunk-wrapping each argument.

• What is a macro? A rule performed by the compiler that expands a

macro invocation (which typically looks just like a function application)

into standard language code that actually implements the macro

operation.

• Macros are under-utilized in modern languages because surface

(concrete) program syntax is so ugly and messy to manipulate. Strings

separated by varying amounts of whitespace. Ugh!

• Programs conceptually have an intelligible tree-based (abstract) syntax

that programmers never see. At this level macros are easy to express

and understand. The Racket/Scheme/Lisp family of languages is ideal

for macros because concrete syntax  abstract syntax.

COMP 311, Fall 2020 11

[The following slide as corrected now appears as slide 6 in Lecture 12.]

Corrected LazyRacket Macros

• Racket incorporates a very sophisticated macro system

• Simply macros are defined using the construct define-syntax-rule.

• To learn more about Racket macros, read the Chapter 16 of the Racket

Guide (bundled as part of your DrRacket installation) entitled Macros.

• Using define-syntax-rule, we can easily define lazy-cons, lazy-first,

and lazy-rest as follows:

#lang racket

(define-syntax-rule (lazy-cons f r)

(cons (lambda () f) (lambda () r)))

(define-syntax-rule (lazy-first lc) ((car lc)))

(define-syntax-rule (lazy-rest lc) ((cdr lc)))

Note: The standard dialect of Racket supports macros, while the HTDP

languages do not. Standard Racket requires the use of car and cdr

above instead of first and rest for technical reasons.

COMP 311, Fall 2020 12

Practical Critique of LazyRacket Macros

• In Scheme, a cons struct (which is built-in to support lists) is mutable;

in the official Racket languages, it is not. I don’t think it is in the HTDP

languages either even though the documentation states that it is permitted

in the Advanced Student Language. I searched for documentation on the

associated mutation operators and could not find any. In official Racket,

there is a mutable form of cons called mcons the HTDP languages predate

mcons. In the days of DrScheme (when the first edition of HTDP was

written), cons was mutable at the Advanced Student level and beyond

(like R5RS, PrettyBig). Today, mutable cons still exists in R5RS, but the

implementation is now done using the Racket mcons package with mcons,

set-mcons-car!, and set-mcons-cdr! renamed as mcons, set-mcons-car!,

and set-mcons-cdr! to meet the R5RS standard. I don’t know if mcons

package precisely complies the old R5RS cons standard but I would not

be surprised if it did. Why introduce all of this complication to support

immutable cons? Optimization! mcons is pathological.

COMP 311, Fall 2020 13

Practical Critique cont.

• Since cons is immutable, we cannot directly change the contents of the car

and cdr fields. We have to embed boxes (box is a unary mutable constructor

built-in to Racket and Scheme) inside the cons struct adding a level of

indirection in the machine representation. At this point, it is probably better to

use delay, a built-in lazy unary constructor in Racket/Scheme (it is not part of

Core Racket) which performs our optimization. Built-in primitives typically are

often optimized beyond the that what be achieved by equivalent source code.

Since delay is lazy, it eliminates the need for thunks (it already includes similar

machinery). Nevertheless, I am not pleased with this implementation of

laziness because of the extra level of indirection, it will be significantly slower

that the macro I wanted to write but could not because cons is now immutable.

• I am no more optimistic about the eventual fate or Racket than I am about the

fate of Scala. Both are byzantine platforms created primarily for use by

insiders (wizards who have spent years learning, implementing, and extending

the platform).

