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All Real “Functional” Languages Except 

Haskell Support Imperative Operations

• Why do nearly all real “functional” languages include imperative 

operations?

• The real world is imperative (changes state).  The real world and many 

conceptual models evolve (change state) over time.  In computations 

simulating these models, it is often convenient (and conceptually 

economical to let execution recapitulate evolution. During the simulation of 

the model, changes in the state of the model are represented by changes 

in the current program state.  Imperativity may be simpler in some cases.

• Our computer hardware is imperative.  At some point, even pure functional 

code must be executed on hardware where every computation step 

(execution of a machine instruction) involves mutation.  To produce efficient 

machine code to solve a problem, we often need to describe the 

computation in imperative terms.  Most fast algorithms perform incremental 

operations that are imperative.
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Functional Programming Culture

• Imperative computation must be clearly identified as such. When imperativity is used 

“internally” to improve performance, it should be encapsulated when possible behind 

APIs that are functional.

Examples: 

• Memoization

• Fast imperative algorithms for solving problems which may have slower functional 

equivalents

• Simulation of physical systems: the change in state over short time intervals is 

typically small and the successor state in discrete is often a simple update to the 

current state.  In some cases, it is possible to preserve the old state and construct 

the new state by sharing pieces of the previous state but many data structures (like 

arrays) must be completely copied if the old state is to be preserved, compromising 

the efficiency of the update operation.  Essentially all physical simulations rely on 

destructive updates.  On the other hand, it may be convenient to build a complete 

new representation particularly in the context of parallelism.  Parallel execution 

often required copying for the sake of data locality.
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FP Culture Continued

In Racket/Scheme

• Most mutation operations (at least those in libraries) end with a ! (read 

“bang”) character.  Matthias Felleisien loved to title the lecture introducing 

the imperative extension of Scheme “The Big Bang!”

• Simulation of physical systems: the change in state over short time intervals 

is typically small and the successor state in discrete is often a simple update 

to the current state.  In some cases, it is possible to preserve the old state 

and construct the new state by sharing pieces of the previous state but 

many data structures (like arrays) must be completely copied if the old state 

is to be preserved, compromising the efficiency of the update operation.  

Essentially all physical simulations rely on destructive updates.  On the 

other hand, it may be convenient to build a complete new representation 

particularly in the context of parallelism.  Parallel execution often required 

copying for the sake of data locality.



Mutation Example 

Naïve Fibonacci with Memoization
(define fib

(local 

[(define results (make-hash))  ;; results is empty hash table

(define (fibHelp n)

(cond [(< n 2) 1]

;; if n is in the memo table, return the cached value

[(hash-has-key? results n) (hash-ref results n)]

[else ;; bind sum to fib(n)

(let [(sum (+ (fibHelp (- n 1)) (fibHelp (- n 2))))] 

(begin

(hash-set! results n sum) ;; add <n,sum> to table

sum))]))]

fibHelp))
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Bottom Up Improvement
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Aside: Introducing local vars

Racket/Scheme supports three different forms of “let” (a common name 

in functional langugaes for an expression that introduces new local 

variables) that only differ on the text that is in the scope of the new 

bindings

• (let    [(x1 E1) … (xn En)] E)

• (let*   [(x1 E1) … (xn En)] E)

• (letrec [(x1 E1) … (xn En)] E)

In all three constructs, the new local variables x1, …, xn are 

“visible” in the body E.  In let, the new local variables are “invisible” 

(not in scope) in the right-hand-sides E1, …, En of the new local 

bindings.  In let*, each local variable xi is visible in subsequent right-

hand-sides Ei+1, …, En.  In letrec, all local variable are visible (but not 

necessarily defined) in all right-hand-sides E1, …, En.
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Observations About Various let forms

Ordinary let appears in most functional languages because it simply

abbreviates a lambda application:

(let [(x1 E1) … (xn En)] E)  ((lambda (x1 … xn) E) E1 … En) 

The let* operation has a nearly trivial definition:

(let* [(x1 E1) … (xn En)] E) 

(let [(x1 E1)]

(let … 

(let [(xn En)] E) … E) … ))

which is how Java defines the meaning of a block of local bindings/

The letrec operation is alternate notation for local:

(letrec [(x1 E1) … (xn En)] E) 

(local [(define x1 E1) … (define xn En)] E)

which is how Algol-like languages define the meaning of a block of local bindings.

letrec is the most expressive of the three because it supports recursive 
definitions.  If you use fresh names for local variables, it subsumes the others.
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Core Imperative Operations

• Assignment

(set! v E) rebinds variable v to the value of E

• Struct field mutation (except cons)

(<struct-name>-<field-name>! E1 E2)

changes the specified field in the struct determined

by E1 to the value of E2; if the value of E1 is not an 

instance of the specified struct, an error is thrown

• Imperative sequencing

(begin E1 … En)

evaluates E1, … , En and returns the value of E
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Example: a Racket Macro for Lazy cons

• The workaround: define lazy constructors as macros that expand lazy 

constructor applications to application of the corresponding strict 

constructor composed with thunk-wrapping each argument.

• What is a macro?  A rule performed by the compiler that expands a 

macro invocation (which typically looks just like a function application) 

into standard language code that actually implements the macro 

operation. 

• Macros are under-utilized in modern languages because surface 

(concrete) program syntax is so ugly and messy to manipulate.  Strings 

separated by varying amounts of whitespace. Ugh!

• Programs conceptually have an intelligible tree-based (abstract) syntax 

that programmers never see.  At this level macros are easy to express 

and understand.  The Racket/Scheme/Lisp family of languages is ideal 

for macros because concrete syntax  abstract syntax.
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[The following slide as corrected now appears as slide 6 in Lecture 12.]

Corrected LazyRacket Macros 

• Racket incorporates a very sophisticated macro system

• Simply macros are defined using the construct define-syntax-rule.

• To learn more about Racket macros, read the Chapter 16 of the Racket 

Guide (bundled as part of your DrRacket installation) entitled Macros.

• Using define-syntax-rule, we can easily define lazy-cons, lazy-first, 

and lazy-rest as follows:

#lang racket

(define-syntax-rule (lazy-cons f r)

(cons (lambda () f) (lambda () r)))

(define-syntax-rule (lazy-first lc) ((car lc)))

(define-syntax-rule (lazy-rest lc) ((cdr lc)))

Note: The standard dialect of Racket supports macros, while the HTDP 

languages do not.  Standard Racket requires the use of car and cdr

above instead of first and rest for technical reasons.
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Practical Critique of LazyRacket Macros

• In Scheme, a cons struct (which is built-in to support lists) is mutable;

in the official Racket languages, it is not.  I don’t think it is in the HTDP 

languages either even though the documentation states that it is permitted 

in the Advanced Student Language.  I searched for documentation on the 

associated mutation operators and could not find any. In official Racket, 

there is a mutable form of cons called mcons the HTDP languages predate 

mcons.  In the days of DrScheme (when the first edition of HTDP was 

written), cons was mutable at the Advanced Student level and beyond 

(like R5RS, PrettyBig).  Today, mutable cons still exists in R5RS, but the 

implementation is now done using the Racket mcons package with mcons,

set-mcons-car!, and set-mcons-cdr! renamed as mcons, set-mcons-car!, 

and set-mcons-cdr! to meet the R5RS standard.  I don’t know if mcons

package precisely complies the old R5RS cons standard but I would not 

be surprised if it did.  Why introduce all of this complication to support 

immutable cons?  Optimization!  mcons is pathological.
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Practical Critique cont.

• Since cons is immutable, we cannot directly change the contents of the car

and cdr fields.  We have to embed boxes (box is a unary mutable constructor 

built-in to Racket and Scheme) inside the cons struct adding a level of 

indirection in the machine representation.  At this point, it is probably better to 

use delay, a built-in lazy unary constructor in Racket/Scheme (it is not part of 

Core Racket) which performs our optimization.  Built-in primitives typically are 

often optimized beyond the that what be achieved by equivalent source code.  

Since delay is lazy, it eliminates the need for thunks (it already includes similar 

machinery).  Nevertheless, I am not pleased with this implementation of 

laziness because of the extra level of indirection, it will be significantly slower 

that the macro I wanted to write but could not because cons is now immutable.

• I am no more optimistic about the eventual fate or Racket than I am about the 

fate of Scala.  Both are byzantine platforms created primarily for use by 

insiders (wizards who have spent years learning, implementing, and extending 

the platform).


