
1

Higher-Order Functional

Programming in Java

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Partial Hoisting

• In a union hierarchy, the same code may be repeated

in some proper subset of the variants.

• We can eliminate this code duplication by introducing

a new abstract class that is a superclass only of the

variants that repeat the same code.

• Partial hoisting modifies the form of the class diagram

because it introduces a new abstract class below the

root (parent) abstract class of the union.

COMP 311, Fall 2020 3

Data Domain Definitions
• Functional programs typically manipulate algebraic data types (inductively defined

trees) sometimes augmented by functions as data values. A context free grammar

where the right hand sides of productions denote trees rather than strings is a good

model (called a tree grammar). Regrettably tree grammars are not part of the

standard “theory” curriculum in undergraduate computer science.

• We use the composite pattern, the recursive generalization of the union pattern, to

represent algebraic data types (ignoring function values for the moment). The

composite pattern is simply a very important special case of the union pattern where

one of more fields in a variant (clause in the inductive definition) has the same type

as the parent type, providing a mechanism for constructing arbitrarily large data

values.

• Each different form of value construction in the definition is typically a separate Java

class; hence a Java class plays roughly he same role as a Racket struct. The parent

type is typically an interface or abstract class. (Since Java 8, the methods in

interfaces can be concrete, so we presumably can always use interfaces.) The

IntList class hierarchy from the current homework assignment is a good example.

COMP 311, Fall 2020 4

The Interpreter Pattern

• To define a method m on a composite class, we follow the same

process as we would in defining a method on a union class, with one

new wrinkle. In the variants that refer to the composite class (have

fields of composite class type), computing m for embedded self

references will usually involve delegating the task of computing m to the

parent composite class which uses dynamic dispatch to determine what

code is executed. Dynamic dispatch corresponds to case-splitting as in

the Racket cond construct or pattern matching in the ML-languages.

• In the IntList code provided in the current homework, the only

embedded reference to IntList in variant subclasses is the rest field

in ConsIntList. In the interpreter pattern we recursively apply m to

fields of the parent class type.

• The Interpreter pattern is simply structural recursion in the context of

object-oriented data (the composite pattern)

COMP 311, Fall 2020 5

Example: IntLists

• An IntList is either:

• EmptyIntList(), the empty list, or

• ConsIntList(first,rest), a non-empty list,

where first is an int and rest is an IntList.

• Some examples include:
EmptyIntList()
ConsIntList(7,EmptyIntList())
ConsIntList(12,ConsIntList(17,Empty()))

COMP 211, Spring 2009 6

IntList

abstract class IntList { }

class EmptyIntList extends IntList { }

class ConsIntList extends IntList {

int first;

IntList rest;

}

COMP 311, Fall 2020 7

Defining Methods on IntList

Sort example:
abstract class IntList {

abstract IntList sort() { }

}

class EmptyIntList extends IntList {

IntList sort() { ... }

}

class ConsIntList extends IntList {

int first;

IntList rest;

IntList sort() { ... }

}

COMP 211, Spring 2009 8

IntList sort cont.

abstract class IntList {

abstract IntList sort() { }

abstract IntList insert(int i) { }

}

class EmptyIntList extends IntList {

IntList sort() { return this; }

IntList insert(int i) { return new ConsIntList(i, this); }

}

class ConsIntList extends IntList {

int first;

IntList rest;

IntList sort() { return rest.insert(first); }

IntList insert(int i) {

if (i <= first) return new ConsIntList(i, this);

else return new ConsIntList(first, rest.insert(i));

}

COMP 211, Spring 2009 9

IntList sort cont.

abstract class IntList {

abstract IntList sort() { }

abstract IntList insert(int i) { }

}

class EmptyIntList extends IntList {

IntList sort() { return this; }

IntList insert(int i) { return new ConsIntList(i, this); }

}

class ConsIntList extends IntList {

int first;

IntList rest;

IntList sort() { return rest.sort().insert(first); }

IntList insert(int i) {

if (i <= first) return new ConsIntList(i, this);

else return new ConsIntList(first, rest.insert(i));

}

COMP 211, Spring 2009 10

Three Important Idioms

Singleton Pattern

• 0-ary variants (no fields) typically have only one
instance, e.g., the empty list.

• Idiom for creating one and only one instance.

Strategy Pattern

• Functions as data values can be represented
by instances of anonymous inner classes.

• Idiom for dynamically creating new function values.b

Parametric Polymorphism (Generic types)

• Classes (and methods) can be parameterized by type

• Regrettably type parameters are not first-class;
usage is restricted relative to ordinary types

COMP 211, Spring 2009 11

Singleton Pattern

• In Java, a final method variable or field cannot be modified once it
is bound. Idea: bind a static final field to the sole instance of a
class and make the constructor private.

• Example: EmptyIntList

class EmptyIntList extends IntList {

static final EmptyIntList ONLY = new EmptyIntList();

private EmptyIntList() { }

IntList sort() { return this; }

IntList insert(int n) { return cons(n); }

}

• To refer to the empty list, write EmptyIntList.ONLY.

COMP 211, Spring 2009 12

Strategy Pattern
• In Java 1.1 (the first revised release of Java), inner classes were

added to the language. We will ignore static inner classes since
they only change the visibility of raw class names (without the
package name qualifier); they have semantics identical to ordinary
top-level classes. The interesting case is the “dynamic” inner class
where every instance of such a class has an “enclosing instance”,
an instance of the enclosing class. in most common usages the
enclosing class is the class of this.

• I think the inventor of Java inner classes, John Rose, a close friend
of Guy Steele when he was an MIT graduate student, understood
that inner classes where the OO-analog of closures (the
representation of a function value in a language supporting
functions as data). He even included notation for anonymous inner
classes analogous to lambda-abstractions in Scheme/Racket. So
an anonymous inner class is conceptually a closure like a lambda-
abstraction.

COMP 311, Fall 2020 13

Strategy Pattern cont.
• What is a closure? The code for a lambda-abstraction plus an environment

specifying the values of the free variables.

• I think the inventor of Java inner classes, John Rose, a close friend of Guy
Steele when he was an MIT graduate student, understood that inner
classes where the OO-analog of closures (the representation of a function
value in a language supporting functions as data). He even included
notation for anonymous inner classes analogous to lambda-abstractions in
Scheme/Racket. So an anonymous inner class is conceptually a closure
like a lambda-abstraction.

• John’s original proposal allowed arbitrary references to free method
variables within anonymous inner classes, but this forced variables that
appear free in anonymous inner classes to have heavier-weight
implementations than ordinary method variables, so the Java standards
committee within Sun Microsystems decided to only allow free references
to final variables. Why? They can be copied as hidden fields in the
anonymous inner class object because they are immutable!

COMP 311, Fall 2020 14

Strategy Pattern cont.
• How do we represent a function as an anonymous inner class. We

introduce and interface for the particular function type we need. Stephen
used to support a library in Comp 310 of such interface (parameterized by
generic types which we will avoid for now). Say that we want to represent
a function from int to int. Then the interface

interface FunctionInt_Int {

public int apply(int x);

}

should suffice.

• An anonymous inner class extends a type (typically an interface) filling in
any method that is not yet defined. The code for the method is simply the
code to compute the desired function! The Java compiler concocts a
garbled name for the anonymous inner class and only one instance is ever
created (unless a programmer digs out the garbled name …)

COMP 311, Fall 2020 15

Parametric Polymorphism
• In Racket, we quickly realized that restricted the elements of a list to a

single type like number was a bad idea in most contexts because we were
forced to replicate potentially shareable code for every different kind of list.
So we introduced annotations that were parametric.

• Exactly the same situation arises in all statically typed languages, even
Java with its more flexible type system that most statically typed
languages. Initially, Java limped by because type Object is the supertype
of all objects (instances of classes), but using it to support code sharing
and flexibility was clumsier than in dynamically typed languages (like
Racker) because most methods in Java require specific subtypes of
Object implying that such polymorphic code required lots of casts as soon
as specific values were extracted from polymorphic data structures. In
addition, Sun claimed Java was the “last programming language” (no one
really believed it) but Java needed to compete with the ML-family of
languages and with C++ which had an ugly form of type parameterization
called templates.

•

COMP 311, Fall 2020 16

Parametric Polymorphism cont.

• In 1997-1998, programming language researchers proposed several different
scheme for adding type parameterization (called “generic types” by the OOP
research community). Guy Steele and I proposed a rather elegant scheme to
support first-class generic types but it was rejected (too complex) and a
scheme proposed by a group including Phil Wadler and Martin Odersky won
based on type erasure.

• I doubt that either Phil or Martin is very proud of what has ensued. Java type
parameters are erased from the byte code generated by the Java compiler (the
byte code has no provision for supporting parametric type information) so many
natural uses of parametric types are forbidden in Java. Nevertheless, there are
reasonable workarounds in many cases and stinky, passable workarounds in
others which enable most developers to hold their noses and get by.

• Scala managed to clean things up somewhat but even Scala is hobbled by its
compatibility with Java and it ugly generic type system. Martin Odersky was
interested in exploring the adaptation of the Cartwright-Steele proposal for
Scala but my planned sabbatical was derailed so Scala and Java both live with
crippled type systems.

COMP 311, Fall 2020 17

Parametric Polymorphism cont.

• The javac compiler enforces generic typing, but the compiler allows that
system to be breached in various ways via annotations and “raw” types. I
think newer versions of Java have partially plugged some holes but Java
will never be a language with a rigorous type discipline in practice. There
are many situations where cheating on type-checking yields far more
elegant implementations.

• Fundamental limitation: no typable code can rely on run-time type
information that is not revealed by control flow and even some of this
information (e.g., the results of instanceof tests) is not available.

• Examples of operations that are forbidden where T is type parameter

• new T(…), new T[], (T) <expr>, (<generic type>) <expr>

• To escape these restrictions, the parameterized types of objects must be
discoverable at run-time, which the Cartwright-Steele proposal supported
at essentially no run-time overhead cost.

COMP 311, Fall 2020 18

Working Around Type Erasure

• Best approach: use an intuitive understanding of parameterized

types (a la Racket annotation) and back off (weakening your types)

when bitten by type errors reported by the compiler.

• Most important trick: use ArrayList<T> when you might want T[].

• Wildcard types (generic types with ? used as a parametric type) are

really ugly and hard to work worth; I would avoid them if possible.

They are designed to accommodate subtyping at the level of

generic type variables, e.g. ArrayList<Integer> is a subtype of

ArrayList<Number>. In most cases, the extra work to get the

wildcard types right is not worth the effort. It is probably better to

simply live with weaker typing. (Potential exception: widely used

libraries. But usage is more difficult.)

