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Partial Hoisting

• In a union hierarchy, the same code may be repeated 

in some proper subset of the variants.

• We can eliminate this code duplication by introducing 

a new abstract class that is a superclass only of the 

variants that repeat the same code.

• Partial hoisting modifies the form of the class diagram 

because it introduces a new abstract class below the 

root (parent) abstract class of the union.
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Data Domain Definitions
• Functional programs typically manipulate algebraic data types (inductively defined 

trees) sometimes augmented by functions as data values.  A context free grammar 

where the right hand sides of productions denote trees rather than strings is a good 

model (called a tree grammar).  Regrettably tree grammars are not part of the 

standard “theory” curriculum in undergraduate computer science.

• We use the composite pattern, the recursive generalization of the union pattern, to 

represent algebraic data types (ignoring function values for the moment).  The 

composite pattern is simply a very important special case of the union pattern where 

one of more fields in a variant (clause in the inductive definition) has the same type 

as the parent type, providing a mechanism for constructing arbitrarily large data 

values.  

• Each different form of value construction in the definition is typically a separate Java 

class; hence a Java class plays roughly he same role as a Racket struct. The parent 

type is typically an interface or abstract class.  (Since Java 8, the methods in 

interfaces can be concrete, so we presumably can always use interfaces.)  The 

IntList class hierarchy from the current homework assignment is a good example.
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The Interpreter Pattern

• To define a method m on a composite class, we follow the same 

process as we would in defining a method on a union class, with one 

new wrinkle.  In the variants that refer to the composite class (have 

fields of composite class type), computing m for embedded self 

references will usually involve delegating the task of computing m to the 

parent composite class which uses dynamic dispatch to determine what 

code is executed.  Dynamic dispatch corresponds to case-splitting as in 

the Racket cond construct or pattern matching in the ML-languages.

• In the IntList code provided in the current homework, the only 

embedded reference to IntList in variant subclasses is the rest field 

in ConsIntList.  In the interpreter pattern we recursively apply m to 

fields of the parent class type.

• The Interpreter pattern is simply structural recursion in the context of 

object-oriented data (the composite pattern)
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Example: IntLists

• An IntList is either:

• EmptyIntList(), the empty list, or

• ConsIntList(first,rest), a non-empty list, 

where first is an int and rest is an IntList.

• Some examples include:
EmptyIntList()
ConsIntList(7,EmptyIntList()) 
ConsIntList(12,ConsIntList(17,Empty()))
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IntList

abstract class IntList { }

class EmptyIntList extends IntList { }

class ConsIntList extends IntList {

int first;

IntList rest;

}
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Defining Methods on IntList

Sort example:
abstract class IntList { 

abstract IntList sort() { }

}

class EmptyIntList extends IntList { 

IntList sort() { ... }

}

class ConsIntList extends IntList {

int first;

IntList rest;

IntList sort() { ... }

}
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IntList sort cont.

abstract class IntList { 

abstract IntList sort() { }

abstract IntList insert(int i) { }

}

class EmptyIntList extends IntList { 

IntList sort() { return this; }

IntList insert(int i) { return new ConsIntList(i, this); }

}

class ConsIntList extends IntList {

int first;

IntList rest;

IntList sort() { return rest.insert(first); }

IntList insert(int i) {

if (i <= first) return new ConsIntList(i, this);  

else return new ConsIntList(first, rest.insert(i));

}
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IntList sort cont.

abstract class IntList { 

abstract IntList sort() { }

abstract IntList insert(int i) { }

}

class EmptyIntList extends IntList { 

IntList sort() { return this; }

IntList insert(int i) { return new ConsIntList(i, this); }

}

class ConsIntList extends IntList {

int first;

IntList rest;

IntList sort() { return rest.sort().insert(first); }

IntList insert(int i) {

if (i <= first) return new ConsIntList(i, this);  

else return new ConsIntList(first, rest.insert(i));

}
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Three Important Idioms

Singleton Pattern

• 0-ary variants (no fields) typically have only one 
instance, e.g., the empty list.

• Idiom for creating one and only one instance.

Strategy Pattern

• Functions as data values can be represented
by instances of anonymous inner classes.

• Idiom for dynamically creating new function values.b

Parametric Polymorphism (Generic types)

• Classes (and methods) can be parameterized by type

• Regrettably type parameters are not first-class; 
usage is restricted relative to ordinary types
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Singleton Pattern

• In Java, a final method variable or field cannot be modified once it 
is bound.  Idea: bind a static final field to the sole instance of a 
class and make the constructor private.

• Example: EmptyIntList

class EmptyIntList extends IntList {

static final EmptyIntList ONLY = new EmptyIntList();

private EmptyIntList() { }

IntList sort() { return this; }

IntList insert(int n) { return cons(n); }

}

• To refer to the empty list, write EmptyIntList.ONLY.
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Strategy Pattern
• In Java 1.1 (the first revised release of Java), inner classes were 

added to the language.  We will ignore static inner classes since 
they only change the visibility of raw class names (without the 
package name qualifier); they have semantics identical to ordinary 
top-level classes.  The interesting case is the “dynamic” inner class 
where every instance of such a class has an “enclosing instance”, 
an instance of the enclosing class.  in most common usages the 
enclosing class is the class of this.

• I think the inventor of Java inner classes, John Rose, a close friend 
of Guy Steele when he was an MIT graduate student, understood 
that inner classes where the OO-analog of closures (the 
representation of a function value in a language supporting 
functions as data).  He even included notation for anonymous inner 
classes analogous to lambda-abstractions in Scheme/Racket.  So 
an anonymous inner class is conceptually a closure like a lambda-
abstraction.
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Strategy Pattern cont.
• What is a closure?  The code for a lambda-abstraction plus an environment 

specifying the values of the free variables. 

• I think the inventor of Java inner classes, John Rose, a close friend of Guy 
Steele when he was an MIT graduate student, understood that inner 
classes where the OO-analog of closures (the representation of a function 
value in a language supporting functions as data).  He even included 
notation for anonymous inner classes analogous to lambda-abstractions in 
Scheme/Racket.  So an anonymous inner class is conceptually a closure 
like a lambda-abstraction.  

• John’s original proposal allowed arbitrary references to free method 
variables within anonymous inner classes, but this forced variables that 
appear free in anonymous inner classes to have heavier-weight 
implementations than ordinary method variables, so the Java standards 
committee within Sun Microsystems decided to only allow free references 
to final variables.  Why?  They can be copied as hidden fields in the 
anonymous inner class object because they are immutable!
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Strategy Pattern cont.
• How do we represent a function as an anonymous inner class.  We 

introduce and interface for the particular function type we need.  Stephen 
used to support a library in Comp 310 of such interface (parameterized by 
generic types which we will avoid for now).  Say that we want to represent 
a function from int to int.  Then the interface

interface FunctionInt_Int {

public int apply(int x);

}

should suffice.

• An anonymous inner class extends a type (typically an interface) filling in 
any method that is not yet defined.  The code for the method is simply the 
code to compute the desired function!  The Java compiler concocts a 
garbled name for the anonymous inner class and only one instance is ever 
created (unless a programmer digs out the garbled name …)
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Parametric Polymorphism
• In Racket, we quickly realized that restricted the elements of a list to a 

single type like number was a bad idea in most contexts because we were 
forced to replicate potentially shareable code for every different kind of list.  
So we introduced annotations that were parametric.  

• Exactly the same situation arises in all statically typed languages, even 
Java with its more flexible type system that most statically typed 
languages.  Initially, Java limped by because type Object is the supertype
of all objects (instances of classes), but using it to support code sharing 
and flexibility was clumsier than in dynamically typed languages (like 
Racker) because most methods in Java require specific subtypes of 
Object implying that such polymorphic code required lots of casts as soon 
as specific values were extracted from polymorphic data structures.  In 
addition, Sun claimed Java was the “last programming language” (no one 
really believed it) but Java needed to compete with the ML-family of 
languages and with C++ which had an ugly form of type parameterization 
called templates.

•
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Parametric Polymorphism cont.

• In 1997-1998, programming language researchers proposed several different 
scheme for adding type parameterization (called “generic types” by the OOP 
research community).  Guy Steele and I proposed a rather elegant scheme to 
support first-class generic types but it was rejected (too complex) and a 
scheme proposed by a group including Phil Wadler and Martin Odersky won 
based on type erasure.  

• I doubt that either Phil or Martin is very proud of what has ensued.  Java type 
parameters are erased from the byte code generated by the Java compiler (the 
byte code has no provision for supporting parametric type information) so many 
natural uses of parametric types are forbidden in Java.  Nevertheless, there are 
reasonable workarounds in many cases and stinky, passable workarounds in 
others which enable most developers to hold their noses and get by.  

• Scala managed to clean things up somewhat but even Scala is hobbled by its 
compatibility with Java and it ugly generic type system.  Martin Odersky was 
interested in exploring the adaptation of the Cartwright-Steele proposal for 
Scala but my planned sabbatical was derailed so Scala and Java both live with 
crippled type systems.
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Parametric Polymorphism cont.

• The javac compiler enforces generic typing, but the compiler allows that 
system to be breached in various ways via annotations and “raw” types.  I 
think newer versions of Java have partially plugged some holes but Java 
will never be a language with a rigorous type discipline in practice.  There 
are many situations where cheating on type-checking yields far more 
elegant implementations.

• Fundamental limitation: no typable code can rely on run-time type 
information that is not revealed by control flow and even some of this 
information (e.g., the results of instanceof tests) is not available.

• Examples of operations that are forbidden where T is type parameter

• new T(…), new T[], (T) <expr>, (<generic type>) <expr>

• To escape these restrictions, the parameterized types of objects must be 
discoverable at run-time, which the Cartwright-Steele proposal supported 
at essentially no run-time overhead cost.
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Working Around Type Erasure

• Best approach: use an intuitive understanding of parameterized 

types (a la Racket annotation) and back off (weakening your types) 

when bitten by type errors reported by the compiler.

• Most important trick: use ArrayList<T> when you might want T[].

• Wildcard types (generic types with ? used as a parametric type) are 

really ugly and hard to work worth; I would avoid them if possible. 

They are designed to accommodate subtyping at the level of 

generic type variables, e.g. ArrayList<Integer> is a subtype of 

ArrayList<Number>.  In most cases, the extra work to get the 

wildcard types right is not worth the effort.  It is probably better to 

simply live with weaker typing.  (Potential exception: widely used 

libraries.  But usage is more difficult.)   


