
1

Racket Primitives and Function Definitions

Robert “Corky” Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2020 2

Today’s Goals

• Common basic types

• Common primitive operations

• Rules for reducing programs

• Simple programs =
Variable definitions + Function definitions

• The design recipe

• Errors

• Data definitions

COMP 311, Fall 2020 3

Basic (primitive) types of data

Numbers:

• naturals: 0, 1, 2, … // number theory in mathematics

• integers: …, -1, 0, 1, … // include negatives

• rational numbers: 3/4, 0, -1/3, … // include fractions

• inexact numbers: #i0.123, #i0, … // floating point numbers

Operations: +, -, *, /, expt, remainder, sqrt

Racket computes exact answers on exact inputs when possible

Booleans: #false, #true // true => #true false => #false

Operations: not, and, or, …

Symbols: ‘A, ‘a, ‘Aa, ‘Corky, … // prefix quote marks: Racket!

Operations: … // none important for now

Other basic types: strings, vectors , … // none important for now

COMP 311, Fall 2020 4

Mixed-type Operations and Primitive Computation

• Basic relational operators

• equal? // all data values

• =, <, >, <=, >= // only on numbers

• Primitive computation = application of a basic operation to constants

• Basic operation = basic function

• Soon, we will see how to define our own (non-primitive) functions

• Function application in Racket: parenthesized prefix notation

• Scheme uses parenthesized prefix notation uniformly for everything

• (+ 2 2), (sqrt 25), (remainder 7 3)

• Bigger example: (* (+ 1 2) (+ 3 4))

• How does this compare to writing 1+2*3+4 ?

• Racket syntax is simple, uniform, and avoids possible ambiguity

COMP 311, Fall 2020 5

Computation is repeated reduction

• Every Racket program execution is the evaluation of

a given expression constructed from primitive or

defined functions and variables (constants).

• Evaluation proceeds by repeatedly performing the

leftmost possible reduction (simplification) until the

resulting expression is a value.

• A value is the textual representation of any constant.

We will identify all of the expressions that are values

as we explicate the language. Numbers, booleans,

symbols are all values.

COMP 311, Fall 2020 6

Reduction for primitive functions

• A reduction is an atomic computational step that replaces some
expression by a simpler expression as specified by a Racket
evaluation rule (law). Every application of a basic operation to values
yields a value (where run-time error is a special kind of value).

• Example reduction of expression built from primitive functions

(* (+ 1 2) (+ 3 4))

=> (* 3 (+ 3 4))

=> (* 3 7)

=> 21

• Always perform leftmost reduction

• The following is not an atomic step, and so not a reduction

(- (+ 1 3) (+ 1 3)) = 0
It is an equivalence in the transitive closure of reduction.
(Every value reduced to itself.)

COMP 311, Fall 2020 7

Programs = Variable Definitions + Function Definitions

• Variables are simply names for values; a few are predefined
• pi, my-SSN, album-name, tax-rate, x

• Variable definitions
• (define freezing 32)

• (define boiling 212)

• Function definitions
• (define (area-of-box x) (* x x))

• (define (half x) (/ x 2))

• Function applications (just as we saw before)
• (area-of-box 2)

• (half (area-of-box 3))

• Almost any function f used in a program can be written in the form
• (define (f v1 … vn) <expression>)

where <expression> is constructed from constants, variables, function
applications, and a few other constructs to be covered in next lecture.

COMP 311, Fall 2020 8

Reductions for defined functions

• Assume we defined the two functions
(define (area-of-box x) (* x x))

(define (half x) (/ x 2))

• Then Racket can perform these reductions
(half (area-of-box 3)) 

=> (half (* 3 3))

=> (half 9) 

=> (/ 9 2)

=> 4.5

• Reduction stops when we get to a value or an error

COMP 311, Fall 2020 9

The Design Recipe
How should I go about writing programs?

1. Analyze problem and define any requisite data
types including examples

2. State type contract and purpose for function(s) that
solve the problem

3. Give examples of function use and result

4. Select and instantiate a template for the function
body; many are degenerate

5. Write the function itself

6. Test it, and confirm that tests succeeded

The ordering of the steps of the recipe is important

COMP 311, Fall 2020 10

Example: Solve quadratic equation
;; Type Contract: solve-quadratic: number number number -> number Step 2

;; Purpose: (solve-quadratic a b c) finds the larger root of

a*x*x + b*x + c = 0 given it has real roots and a != 0

;; Examples: (solve-quadratic 1 0 -25) = 5 Step 3

;; (solve-quadratic 5 0 -20) = 2

;; (solve-quadratic 1 -10 25) = -4

;; . . . and other examples

;; Template instantiation: (degenerate) Step 4

;; (define (solve-quadratic a b c) ...)

;; Code Step 5

(define (solve-quadratic a b c)

(/ (+ (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a)))

;; Tests for solve-quadratic Step 6

(check-expect (solve-quadratic 1 0 -25) 5)

(check-expect (solve-quadratic 5 0 -20) 2)

(check-expect (solve-quadratic 1 -10 25) 5)

COMP 311, Fall 2020 11

The Design Recipe (Big Picture)

• Encourages systematic problem solving

• Works best if keep our functions small

• We will learn how to repeatedly decompose
problems into simpler problems until we
reach problems that can be solved by simple
expressions as in solve-quadratic

• Decomposition driven by structure of data
being processed: data-directed design

COMP 311, Fall 2020 12

Syntax Errors

• A syntactically correct expression can be

• An atomic expression, like

• a number 17, 4.5, #i0.34

• a variable radius

• A compound expression,

• starting with (

• followed by basic or program-defined operation such as + or b

• one or more expressions separated by spaces

• ending with)

• Syntax errors:

• 3) , (3 + 4) , (+ 3 ,)+(, …

• Compound expressions:
• (+ 3 4) , (first (list 1 2 3))

COMP 311, Fall 2020 13

Runtime Errors

• Happen when basic operations are applied with manifestly

illegal arguments

• Consider the following examples in Racket:
• (sqrt 1 2 3 4) => sqrt: expects only 1 argument, but found 4

• (/ 1 0) => /: division by zero

• (+ 1 ‘a) => +: expects a number as 2nd argument, given 'a

Racket prints error results in red. In hand evaluations (perhaps created using an editor) you can

write use the prefix ERROR instead, e.g.,

• (/ 1 0) => ERROR /: division by zero

Your manually generated description of the error does not have to match Racket exactly: a

paraphrase such as the following is fine:

(sqrt 1 2 3 4) => ERROR: wrong number of arguments to sqrt

• Try examples in DrRacket

COMP 311, Fall 2020 14

Reminders

• New homework (HW1) is posted online

• Due next Tuesday, so you will get to check it over
in lab; don’t wait until your lab to get started.

• Make absolutely sure you follow the recipe in
writing Racket programs.

• Follow format of examples posted on the wiki in
writing hand evaluations.

• Submit your assignment using svn (the command
line name for subversion)

COMP 311, Fall 2020 15

Epilog
• Reminder: continue digesting chs. 1-10 in HTDP

Sections 8.3 and 9.4 are particularly important and they are not wordy.

• Next class (but read about them first and use them in working on HW1)

• Most important primitive form of data: lists

• Data definitions including self-reference (recursive data definitions)

• Conditionals

• Amplified design recipe supporting function definitions that use recursion

• Optional Challenge problem: What happens if we use rightmost reduction instead of leftmost?

Can you devise an expression composed from primitive operations covered in this lecture such

that standard Racket leftmost evaluation produces a different visible result than rightmost

reduction produces (in terms the result generated by the computation). Hint: focus on pathological

behavior. Not all pathological behavior is the same in terms of what Racket reports. Your solution

does not have to an expression that a competent programmer would actually write. (Competent

programmers do not write programs that contain pathological expressions.) Incentive: 20 extra

credit points for hand-written example including step-by-step evaluations. Send your solution by

email to comp311@rice.edu by 11:59 pm Friday.

mailto:comp311@rice.edu

