
1

Data Definitions and Conditionals

Robert “Corky” Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2020 2

Today’s Goals

• Simple data definitions

• Template for processing simple struct data

• Inductive (self-referential) data definitions

• Conditionals

• Template for processing inductive

(recursive) data

COMP 311, Fall 2020 3

Simple Struct Data Definitions

• How do we define new forms of data in Racket? For example, say
we want to write a program for the registrar that maintains a directory
of courses that can be searched …

• Problem description

• “… Each university course will have an associated department and
course number, as well as a class size. …”

• Data definition
;; A course is a structure (make-course dept num size)

;; where dept is a symbol, and num and size are numbers

(define-struct course (dept num size))

• Scheme processes this definition by creating the following
operations:

• constructor: make-course,

• accessors: course-dept, course-num, course-size

• recognizer: course?

COMP 311, Fall 2020 4

Creating and Using Structures

• Syntax for creating a structure:
(define this-class (make-course ’COMP 211 41))

• A structure instance (a constructor applied to values) is a value (and
hence is not reducible)
• It’s big. But it’s a vaule just like 1, true, or ‘Rabbit

• It’s big. But it is NOT a reducible expression, like (+ 1 2)

• Syntax for extracting fields
• (course-dept this-class)

(course-num this-class)

• Reduction for field access
(course-dept (make-course ’COMP 210 50)) => ’COMP

• Notes:
• (make-course ’COMP 210 50) is a value

• (make-course ’COMP 210 size) is not a value (why not?)

• (make-course ’COMP 210 (+ 25 25)) is not a value (why not?)

COMP 211, Spring 2009 5

The Design Recipe (Again!)

How should I go about writing programs?

1. Analyze problem and define any requisite data types

2. State contract (type) and purpose for function that solves
the problem

3. Give examples of function use and result (check-expect)

4. Select and instantiate a template for the function body

5. Write the function itself

6. Test it, and confirm that tests succeeded

The order of the steps of the recipe is important

COMP 311, Fall 2020 6

Template for a Struct Data Type

• We start from the data definition. Example:
;; A course is a structure (make-course dept num size)

;; where dept is a symbol, and num and size are numbers

(define-struct course (dept num size))

• Template for any function processing an argument of type
course

;; (define (f c)

;; ... (course-dept c) ...

;; ... (course-num c) ...

;; ... (course-size c) ...)

• Examples of such a function

;; big-class? : course -> bool

;; empty-class? : course -> bool

;; change-dept : course dept -> course

COMP 311, Fall 2020 7

Type → Template → Code

• Template for function processing a course
;; (define (f ... c ...)

;; ... (course-dept c) ... (course-num c) ... (course-size c) ...)

• Instantiation of template for big-class?
;; (define (big-class? c)

;; ... (course-dept c) ... (course-num c) ... (course-size c) ...)

• Templates help us write the code

(define (big-class? c) (>= (course-size c) 30))

• Sophisticated types → sophisticated templates, helping us write correct, sophisticated code.

• What about types that involve multiple forms of data? Like lists? Or numbers? We need
conditional operations to process them.

COMP 211, Spring 2009 8

Conditional Expressions
• Mechanism for distinguishing different forms of input.

• Form:

(cond [question-1 result-1]

[question-2 result-2]

...

[question-n result-n]

[else default-result])

• Square brackets are used above for clarity. In Racket, they are
synonymous with parentheses, but balancing brackets must match.

• The else “clause” is optional. If omitted and none of the questions
are true, the result is a run-time error (like division by zero).

COMP 311, Fall 2020 9

Reduction of Conditional Expressions

• (cond [true result-1] ...)

=> result-1

• (cond [false result-1]

[question-2 result-2]

...

[else default-result])

=> (cond [question-2 result-2]

...

[else default-result])

• (cond [false result-1]

[else default-result])

=> default-result

• (cond [false result-1])

=> ERROR: all cond predicates were false

• (cond [true result-1] ...)

=> result-1

• (cond [false result-1]

[question-2 result-2]

...

[else default-result])

=> (cond [question-2 result-2]

...

[else default-result])

• (cond [false result-1]

[else default-result])

=> default-result

• (cond [false result-1])

=> ERROR: all cond predicates were false

COMP 211, Spring 2009 10

If Expressions
• Simplified notation for common conditional expressions.

• Form:

(if question result-1 result-2)

abbreviates:

(cond [question result-1]

[else result-2])

• Hence,

(if true result-1 result-2) => result-1

(if false result-1 result-2) => result-2

COMP 311, Fall 2020 11

Inductive Data Definitions
• How can we generate arbitrarily large data objects like lists?

• Use multiple forms of data including a base case and self-reference (induction/recursion)

• Example:

;; A list-of-numbers is either

;; empty, or

;; (cons n lon)

;; where n is a number and lon is a list-of-numbers

• If we assume that empty is a built-in constant identifier (like true), this definition can be

implemented in Scheme by the struct definition

(define-struct cons (first rest))

• This struct definition is built-in to Scheme (a primitive). For the sake of brevity, the

constructor is simply called cons rather than make-cons and the accessors are called

first and rest rather than cons-first and cons-rest. Note that a Racket struct

definition does not stipulate the types of the fields of the structure. (An extension called

Typed Racket does.) Hence, the programmer is responsible for ensuring that cons is used

correctly. In teaching dialects of Racket, cons ensures that its second argument is a list.

The full Racket and Scheme languages do not.

COMP 311, Fall 2020 12

Template for Inductive Data Type

;; (define (f ... alon ...)

;; (cond

;; [(empty? alon) ...] ;; empty case

;; [(cons? alon) ... (first alon) ... ;; cons case

;; ... (f ... (rest alon) ...) ...]))

• Processing inductive (self-referential) data requires recursion
(self-reference) in the computation.

• Why is cond essential?

• In general, this form of the data definition can have more than
two forms of data (any larger finite number is permitted). In
addition, there is a simpler form of data definition involving
multiple forms were there is no recursion; this is called a pure
union type. The template for processing this form of data is
identical except for absence of recursive calls.

COMP 311, Fall 2020 13

Extended Example: Insertion Sort

• Problem: given a list-of-numbers,

sort it into ascending (non-decreasing)

order.

COMP 311, Fall 2020 14

Epilog

On the homework, try to follow the design recipe in

good faith. We are not particularly concerned

about the exact syntax of your documenting

comments. We want to see that you are faithfully

following the process.

