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From last lecture:  List template

;; (define (f ... a-list ...)

;;   (cond

;;     [(empty? a-list) ...]

;;     [(cons? a-list)  ... (first a-list) ... 

;;       ... (f ... (rest a-list) ...) ...]))

Template does not depend on element type.  It applies to

alpha-list where alpha is any type.  In fact, some functions

like length, reverse, append, first, rest work for all

types alpha-list (also written (list-of alpha)).
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Plan for Today

• List abbreviations

• More discussion of the list template

• Data-directed design with numbers

• Strong structural recursion

• Another ubiquitous self-referential data 

type: trees
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List Abbreviations
• Abbreviations

• Let c1, c2, …, cn be constants (including quoted symbols).

(list c1 c2 ... cn) abbreviates

(cons c1 (cons c2 ... (cons cn empty))...)

• Let s1, s2, …, sn be symbols , constants (excluding 
symbols) or lists constructed of such atoms.

• '(s1 ... sn) abbreviates   (list 's1 ... 'sn)

• Examples (all equal)
• '((1 2) (3 four))

• (list (list 1 2) (list 3 'four))

• (cons (cons 1 (cons 2 empty)) (cons (cons 3 (cons ‘four empty)) empty))

• Do not nest quoted notation.

• Do not use true, false, empty inside quotation.
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A simple list function that takes 2 list arguments

• The append function that concatenates lists is 
built-in to Racket.  We will define this function

; app: list-of-alpha list-of-alpha -> list-of-alpha

; purpose: (app a b) concatenates the lists a and b.

; Examples

(check-expect (app '(a b) '(c d)) '(a b c d))

(check-expect (app empty '(c d)) '(c d))

(check-expect (app '(a b) empty) = '(a b)

; Instantiated template (on which argument do we recur?)

|#

(define (app x y)

(cond [(empty x?) ...]

[(cons? x?) ... (first x) ... 

(app (rest x) y) ... ]))

#|
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app cont.

• ; Code:

(define (app x y)

(cond [(empty x?) y]

[(cons? x?) (cons (first x) (app (rest x) y)]))

; Test?  Already done!

• Would recurring on the second argument work?
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Using append as an auxiliary function

• append is included in the Racket library

• concatenation is the common string (a form of 

list of char) “construction” operation

• Problem: cost of operation is not constant; it is 

proportional to size of first argument (or, in case 

of strings, size of constructed list)

• Example of function that when simply coded 
uses append to construct its result: flatten
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Defining Deep Lists and flatten

;; A deepList is either:

;; * empty, or

;; * (cons s adl) where a is a symbol or a deepList and adl is a deepList

;; Examples

(define dl1 '((())))

(define dl2 '((a) ((b))))

(define dl3 '((a b c d (e)) ((f) ((g)))))

;;

;; Template for deepList

#|

(define (f ... dl ... )

(cond [(empty? dl) ... ]

[(symbol? dl) ... (flatten (rest dl)) ... ]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)) ...)]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ... ])]))

|#

;; flatten: deepList -> symbol-list

;; Purpose: (flatten dl) consumes a deepList dl and concatenates all of

;; the symbols embedded in dl into a symbol-list where the symbols appear

;; in the same order as when dl is printed as string.  

;; input to form a list of elements
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Defining Deep Lists and flatten (cont.)

;; Examples: 

(check-expect (flatten dl1) empty)

(check-expect (flatten dl2) '(a b))

(check-expect (flatten dl3) '(a b c d e f g))

;; Template Instantiation for flatten:

#|

(define (flatten dl)

(cond [(empty? dl) ... ]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)))]

[(empty? (first dl)) ... (flatten (rest dl)) ... ]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ... ])]))

|#

;; Code:

(define (flatten dl)

(cond [(empty? dl) empty ]

[(cons? d1)

(cond [(symbol? (first dl)) (cons (first dl) (flatten (rest dl)))]

[(cons? (first dl)) (append (flatten (first dl)) (flatten (rest dl)))])]))
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Defining flatten

;; Tests Done!

Improving flatten?      Need a help function with an accumulator;
next lecture.
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Mathematical Formulation of Inductive 

Data Definitions: Algebraic Types

• The following formal account of algebraic types is provided for mathematically-

oriented students who are interested in the rigorous mathematical structures 

corresponding to our informal inductive data definitions.  This material will not 

appear on any homework assignment (except perhaps extra credit) or exam.

• The domain of values V generated by a collection C of free data constructors

c1(x1,1, x1,2, … x1,n1
), …, cm(xm,1, xm,2, … xm,nm

)

is a set of trees inductively defined by:

• Every 0-ary constructor symbol ‘ci ‘is an element of V.

• If vi,1, vi,2, … vi,ni
, are (not necessarily distinct) elements of V, then the

syntactic object ‘ci(v1,1, v1,2, … v1,ni
)’ is an element of V.

In some sense, V is the closure of C.  

In a typical functional program, the domain V includes an enormous amount of

“junk” because no restrictions are placed on the value arguments vi,1, vi,2, … vi,ni
.
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Mathematical Formulation of Inductive 

Data Definitions: Algebraic Types

An algebraic type definition consists of a finite set T of type symbols T1, …, Tk

defined by type equations:

T1 = 1,  . . .,  Tk = k

where each I is a union of subsets of V (the algebraic domain freely generated 

by C) of the form cj(Tj,1, Tj,2, … Tj,nj
) where each symbol Tj,I T and the 

constructors cj in I are distinct. The last restriction is pragmatic: it ensures that 

each of the terms cj(Tj,1, Tj,2, … Tj,nj
) in I denotes a distinct subset of V and that 

each element of type Ti belongs to a unique component cj(Tj,1, Tj,2, … Tj,nj
) of I, 

facilitating the efficient matching of any element of Ti against the components of 

of I.

All of the informal type definitions (until we include passing functions as 

arguments in our Racket language) satisfy these formal restrictions. 

Constructors correspond to Racket structs. Functions can be accommodated 

as data values by a simple extension that we will discuss in a later lecture.
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Mathematical Formulation of Inductive 

Data Definitions: Algebraic Types

This data definition framework is very expressive.  Essentially any data domain consisting of 

freely constructed finite trees can be formulated as algebraic data.  Some examples include:

• Files on your computer (at least in Linux)

• Simple File (an array of characters), or

• Folder, which contains a list of pairs (string, file)

• XML

• Baroque format for representing algebraic data as ASCII text

• Internet domain names

• Structurally well-formed programs (abstract syntax)

In some cases, the domain of interest must be embedded in a larger “freely constructed 

domain”.  For the domain of ascending integer-lists must be embedded in a larger domain such 

as all integer-lists.  The former is not an algebraic type but the latter is.

On the other hand, some forms of data are best characterized as quotients of algebraic types.  I 

am not aware of a mainstream functional language that directly supports data definitions that 

construct quotients of algebraic types.  In contrast, this form of data definition is easily done in 

many class-based OO languages.
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Natural Numbers:  Data definition

• Standard definition from mathematics
;; A natural-number (natural for short) is either

;; 0, or

;; (add1 n)

;; where n is a natural-number (natural)

• We often use the symbol N to denote this domain.

• Comments:

• In mathematics, add1 is usually called succ, suc, or S, for successor.

• Principle of mathematical induction for the natural numbers is based on this 
definition:

P(0), x [P(x) → P(add1(x))]
—————————————-

x P(x)

• Is there an analogous induction principle for other forms of inductively 

defined data?  Yes!
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Basic Operations on Naturals

• Examples (using constructors)
• Zero:  0

• One:  (add1 0)

• Four:  (add1 (add1 (add1 (add1 0))))

• Accessors:  
• sub1 : N -> N

Note: sub1 is typically called pred or P in mathematical logic; in 

Racket (sub1 0) is not an error (for reasons explained later).

• Recognizers:

• zero? : Any -> bool

• positive? : Any -> bool  ;; not called add1?
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Basic Laws (Reductions) for Natural Numbers

• The rules for primitive or auto-generated (for define-struct) 
operation for a (typically infinite) table

• Recall the ones for lists:
• For all values v, and list values l, we have

• (empty? empty) = true ;; recognizer
• (empty? (cons v l)) = false

• (rest (cons v l)) = l ;; accessor
• (first (cons v l)) = v

• Basic laws:
• For all natural numbers n, we have

• (zero? 0) = true ;; recognizer
• (zero? (add1 n)) = false

• (positive? (add1 n)) = true

• (positive? 0) = false

• (sub1 (add1 n)) = n ;; accessor

• Similar rules exist for all inductively-defined data types

• What about laws for (equal? ...)
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Natural Numbers:  Template

• Template for natural is very similar to lists:

;; f : natural-number -> ... 

;; (define (f n)

;;  (cond [(zero? n) ...]

;;        [(positive? n) 

;;         ...(f (sub1 n)) ...]))
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Example

• Write a function that repeats a symbol s several (n) times

• Examples

(repeat ‘Rabbit 0) = empty

(repeat ‘Rabbit (add1 (add1 0)))

= ‘(Rabbit ‘Rabbit)

• Code:

;; repeat : symbol natural -> symbol-list

(define (repeat s n)

(cond [(zero? n) empty]

[else (cons s (repeat s (sub1 n)))]))
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Generalization: Full Structural Recursion

• Corresponds to “strong induction” on natural numbers

P(0), n [n’<n P(n) ]→ P(S(x))]

———————————————

n P(n)

• Template instantiation includes recursive calls on 

deeper “predecessors” than the immediate ones; the 

instantiation must anticipate what predecessors are 

required.
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Example of Full Structural Recursion

;; fib: natural -> natural

;; Template instantiation

;;(define (fib n)

;; (cond [(< n 2) ...]

;; [(positive? n) .. (fib (- n 1))

;;           .. (fib (- n 2)) .. )]))

;;)

;; Code:

(define (fib n)

(cond [(< n 2) 1]

[(positive? N) (+ (fib (- n 1)) (fib (- n 2)))]))
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Defining Add

(define (add m n)

(cond

[(zero? m) n]

[(positive? m) (add1 (add (sub1 m) n))]))

(define (right-add m n)

(cond

[(zero? n) m]

[(positive? n) (add1 (right-add m (sub1 n)))]))
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Defining Integers

• An integer is either:

• 0; or

• (add1 n) where n has the form 0 or (add1 …) [non-negative]; or 

• (sub1 n) where n has the form 0 or (sub1 …) [non-positive].

• Recognizers:
• zero?: any -> bool

• positive?: any -> bool

• negative?: any -> bool

• In Racket, add1 and sub1 have been extended to all integers by 
defining for all integers n :

• (add1 (sub1 n)) = n

• (sub1 (add1 n)) = n

• Hence, (add1 -1) and (sub1 0) are not errors.
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Another Inductive Type: Trees
• Labeled trees

• Organizational charts

• Decision trees

• Search trees

and many more!



COMP 311, Fall 2020 24

From Lists to Trees

Example of a List Data Definition
;; Given the built-in two argument constructor cons with

;; fields first and rest:

;; An alpha-list is

;; * empty, or

;; * (cons s los)

;; where s is an alpha and los is a alpha-list

Example of a Tree Data Definition
;; Given the struct definition

(define-struct person (name mother father))

; An ancestryTree is

; * empty (representing “unknown origin” or “none”)

; * (make-person n m f)   (with two self-references)

; where n is a symbol, m is a person and f is a person
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Examples of ancestryTree

(make-person 'Bob

(make-person 'Jane empty

(make-person 'Tom

(make-person 'Cat empty empty) empty))

(make-person ’Rob empty

(make-person ’Sue empty

(make-person 'Ray empty

(make-person ’Johny empty empty)))))



COMP 211, Spring 2009 26

Template for ancestryTree

• In non-empty trees, we anticipate accessing each 

child of the tree:

; f : ancestryTree -> ...

; (define (f ... at ...)

;  (cond

;    [(empty? at) ...]

;    [else ... (person-name at) ...

;     ...  (person-mother c) ...

;     ...  (person-father c) ...)
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Template for Processing a Tree
• Recursion in type → recursion in template

; f : person -> ...

; (define (f ... c ...)

;  (cond

;    [(empty? c) ...]

;    [else ... (person-name c) ...

;     ... (f (person-mother c)) ...

;     ... (f (person-father c))...)
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Example: Tree Depth

• Consider the following problem

• Given an ancestry tree, compute the maximum 

number of generations for which we know 

something about this person.

• Type Contract:  person -> natural

• Examples (next slide)

• Template?
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Tree Depth Examples

(define cat (make-person 'Cat empty empty))

(define tom (make-person 'Tom cat empty))

(define jane (make-person empty tom))

(define johnny (make-person 'Johnny empty empty))

(define ray (make-person 'Ray empty johnny))

(define sue (make-person 'Sue empty ray))

(define rob (make-person 'Rob empty sue))

(define bob (make-person 'Bob jane rob))

(check-expect (max-depth cat) 1)

(check-expect (max-depth tom) 2)

(check-expect (max-depth jane) 3)

(check-expect (max-depth johnny) 1)

(check-expect (max-depth ray) 2)

(check-expect (max-depth sue) 3)

(check-expect (max-depth rob) 4)

(check-expect (max-depth bob) 5)
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Tree Depth Template Instantiation

;; max-depth : person -> natural

;; (define (max-depth c)

;;   (cond

;; [(empty? c) ...]

;; [else ...

;; ... (max-depth (person-mother c)) ...

;; ... (max-depth (person-father c)) ...]))
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Tree Depth

;;max-depth : person -> natural

(define (max-depth c)

(cond

[(empty? c) 0]

[else (add1

(max (max-depth (person-mother c))

(max-depth (person-father c)))]))

;; Tests  Done!

Examples (tests) can help in writing code.  
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Binary Search Trees
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Binary Search Trees
(define-struct BTNode (num left right))

;;  A binary-tree (BT) is either

;;  * false, or

;;  * (make-BTNode n l r)

;;  where n is a number, l and r are BTs.

;;  A binary-tree bt is is ordered iff either

;;  * bt is empty, or

;;  * bt has the form (make-BTNode n l r) where

;; Invariants:

;;  1. Numbers in l are less than or equal to n

;;  2. Numbers in r are greater than n

;; A BST is a binary-tree abt that is ordered.


