
1

Data-directed Design

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2020 2

From last lecture: List template

;; (define (f ... a-list ...)

;; (cond

;; [(empty? a-list) ...]

;; [(cons? a-list) ... (first a-list) ...

;; ... (f ... (rest a-list) ...) ...]))

Template does not depend on element type. It applies to

alpha-list where alpha is any type. In fact, some functions

like length, reverse, append, first, rest work for all

types alpha-list (also written (list-of alpha)).

COMP 311, Fall 2020 3

Plan for Today

• List abbreviations

• More discussion of the list template

• Data-directed design with numbers

• Strong structural recursion

• Another ubiquitous self-referential data

type: trees

COMP 311, Fall 2020 4

List Abbreviations
• Abbreviations

• Let c1, c2, …, cn be constants (including quoted symbols).

(list c1 c2 ... cn) abbreviates

(cons c1 (cons c2 ... (cons cn empty))...)

• Let s1, s2, …, sn be symbols , constants (excluding
symbols) or lists constructed of such atoms.

• '(s1 ... sn) abbreviates (list 's1 ... 'sn)

• Examples (all equal)
• '((1 2) (3 four))

• (list (list 1 2) (list 3 'four))

• (cons (cons 1 (cons 2 empty)) (cons (cons 3 (cons ‘four empty)) empty))

• Do not nest quoted notation.

• Do not use true, false, empty inside quotation.

COMP 311, Fall 2020 5

A simple list function that takes 2 list arguments

• The append function that concatenates lists is
built-in to Racket. We will define this function

; app: list-of-alpha list-of-alpha -> list-of-alpha

; purpose: (app a b) concatenates the lists a and b.

; Examples

(check-expect (app '(a b) '(c d)) '(a b c d))

(check-expect (app empty '(c d)) '(c d))

(check-expect (app '(a b) empty) = '(a b)

; Instantiated template (on which argument do we recur?)

|#

(define (app x y)

(cond [(empty x?) ...]

[(cons? x?) ... (first x) ...

(app (rest x) y) ...]))

#|

COMP 311, Fall 2020 6

app cont.

• ; Code:

(define (app x y)

(cond [(empty x?) y]

[(cons? x?) (cons (first x) (app (rest x) y)]))

; Test? Already done!

• Would recurring on the second argument work?

COMP 211, Spring 2009 7

Using append as an auxiliary function

• append is included in the Racket library

• concatenation is the common string (a form of

list of char) “construction” operation

• Problem: cost of operation is not constant; it is

proportional to size of first argument (or, in case

of strings, size of constructed list)

• Example of function that when simply coded
uses append to construct its result: flatten

COMP 311, Fall 2020 8

Defining Deep Lists and flatten

;; A deepList is either:

;; * empty, or

;; * (cons s adl) where a is a symbol or a deepList and adl is a deepList

;; Examples

(define dl1 '((())))

(define dl2 '((a) ((b))))

(define dl3 '((a b c d (e)) ((f) ((g)))))

;;

;; Template for deepList

#|

(define (f ... dl ...)

(cond [(empty? dl) ...]

[(symbol? dl) ... (flatten (rest dl)) ...]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)) ...)]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ...])]))

|#

;; flatten: deepList -> symbol-list

;; Purpose: (flatten dl) consumes a deepList dl and concatenates all of

;; the symbols embedded in dl into a symbol-list where the symbols appear

;; in the same order as when dl is printed as string.

;; input to form a list of elements

COMP 311, Fall 2020 9

Defining Deep Lists and flatten (cont.)

;; Examples:

(check-expect (flatten dl1) empty)

(check-expect (flatten dl2) '(a b))

(check-expect (flatten dl3) '(a b c d e f g))

;; Template Instantiation for flatten:

#|

(define (flatten dl)

(cond [(empty? dl) ...]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)))]

[(empty? (first dl)) ... (flatten (rest dl)) ...]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ...])]))

|#

;; Code:

(define (flatten dl)

(cond [(empty? dl) empty]

[(cons? d1)

(cond [(symbol? (first dl)) (cons (first dl) (flatten (rest dl)))]

[(cons? (first dl)) (append (flatten (first dl)) (flatten (rest dl)))])]))

COMP 311, Fall 2020 10

Defining flatten

;; Tests Done!

Improving flatten? Need a help function with an accumulator;
next lecture.

COMP 311, Fall 2020 11

Mathematical Formulation of Inductive

Data Definitions: Algebraic Types

• The following formal account of algebraic types is provided for mathematically-

oriented students who are interested in the rigorous mathematical structures

corresponding to our informal inductive data definitions. This material will not

appear on any homework assignment (except perhaps extra credit) or exam.

• The domain of values V generated by a collection C of free data constructors

c1(x1,1, x1,2, … x1,n1
), …, cm(xm,1, xm,2, … xm,nm

)

is a set of trees inductively defined by:

• Every 0-ary constructor symbol ‘ci ‘is an element of V.

• If vi,1, vi,2, … vi,ni
, are (not necessarily distinct) elements of V, then the

syntactic object ‘ci(v1,1, v1,2, … v1,ni
)’ is an element of V.

In some sense, V is the closure of C.

In a typical functional program, the domain V includes an enormous amount of

“junk” because no restrictions are placed on the value arguments vi,1, vi,2, … vi,ni
.

COMP 311, Fall 2020 12

Mathematical Formulation of Inductive

Data Definitions: Algebraic Types

An algebraic type definition consists of a finite set T of type symbols T1, …, Tk

defined by type equations:

T1 = 1, . . ., Tk = k

where each I is a union of subsets of V (the algebraic domain freely generated

by C) of the form cj(Tj,1, Tj,2, … Tj,nj
) where each symbol Tj,I T and the

constructors cj in I are distinct. The last restriction is pragmatic: it ensures that

each of the terms cj(Tj,1, Tj,2, … Tj,nj
) in I denotes a distinct subset of V and that

each element of type Ti belongs to a unique component cj(Tj,1, Tj,2, … Tj,nj
) of I,

facilitating the efficient matching of any element of Ti against the components of

of I.

All of the informal type definitions (until we include passing functions as

arguments in our Racket language) satisfy these formal restrictions.

Constructors correspond to Racket structs. Functions can be accommodated

as data values by a simple extension that we will discuss in a later lecture.

COMP 311, Fall 2020 13

Mathematical Formulation of Inductive

Data Definitions: Algebraic Types

This data definition framework is very expressive. Essentially any data domain consisting of

freely constructed finite trees can be formulated as algebraic data. Some examples include:

• Files on your computer (at least in Linux)

• Simple File (an array of characters), or

• Folder, which contains a list of pairs (string, file)

• XML

• Baroque format for representing algebraic data as ASCII text

• Internet domain names

• Structurally well-formed programs (abstract syntax)

In some cases, the domain of interest must be embedded in a larger “freely constructed

domain”. For the domain of ascending integer-lists must be embedded in a larger domain such

as all integer-lists. The former is not an algebraic type but the latter is.

On the other hand, some forms of data are best characterized as quotients of algebraic types. I

am not aware of a mainstream functional language that directly supports data definitions that

construct quotients of algebraic types. In contrast, this form of data definition is easily done in

many class-based OO languages.

COMP 311, Fall 2020 14

Natural Numbers: Data definition

• Standard definition from mathematics
;; A natural-number (natural for short) is either

;; 0, or

;; (add1 n)

;; where n is a natural-number (natural)

• We often use the symbol N to denote this domain.

• Comments:

• In mathematics, add1 is usually called succ, suc, or S, for successor.

• Principle of mathematical induction for the natural numbers is based on this
definition:

P(0), x [P(x) → P(add1(x))]
—————————————-

x P(x)

• Is there an analogous induction principle for other forms of inductively

defined data? Yes!

COMP 311, Fall 2020 15

Basic Operations on Naturals

• Examples (using constructors)
• Zero: 0

• One: (add1 0)

• Four: (add1 (add1 (add1 (add1 0))))

• Accessors:
• sub1 : N -> N

Note: sub1 is typically called pred or P in mathematical logic; in

Racket (sub1 0) is not an error (for reasons explained later).

• Recognizers:

• zero? : Any -> bool

• positive? : Any -> bool ;; not called add1?

COMP 311, Fall 2020 16

Basic Laws (Reductions) for Natural Numbers

• The rules for primitive or auto-generated (for define-struct)
operation for a (typically infinite) table

• Recall the ones for lists:
• For all values v, and list values l, we have

• (empty? empty) = true ;; recognizer
• (empty? (cons v l)) = false

• (rest (cons v l)) = l ;; accessor
• (first (cons v l)) = v

• Basic laws:
• For all natural numbers n, we have

• (zero? 0) = true ;; recognizer
• (zero? (add1 n)) = false

• (positive? (add1 n)) = true

• (positive? 0) = false

• (sub1 (add1 n)) = n ;; accessor

• Similar rules exist for all inductively-defined data types

• What about laws for (equal? ...)

COMP 211, Spring 2009 17

Natural Numbers: Template

• Template for natural is very similar to lists:

;; f : natural-number -> ...

;; (define (f n)

;; (cond [(zero? n) ...]

;; [(positive? n)

;; ...(f (sub1 n)) ...]))

COMP 211, Spring 2009 18

Example

• Write a function that repeats a symbol s several (n) times

• Examples

(repeat ‘Rabbit 0) = empty

(repeat ‘Rabbit (add1 (add1 0)))

= ‘(Rabbit ‘Rabbit)

• Code:

;; repeat : symbol natural -> symbol-list

(define (repeat s n)

(cond [(zero? n) empty]

[else (cons s (repeat s (sub1 n)))]))

COMP 311, Fall 2020 19

Generalization: Full Structural Recursion

• Corresponds to “strong induction” on natural numbers

P(0), n [n’<n P(n)]→ P(S(x))]

———————————————

n P(n)

• Template instantiation includes recursive calls on

deeper “predecessors” than the immediate ones; the

instantiation must anticipate what predecessors are

required.

COMP 211, Spring 2009 20

Example of Full Structural Recursion

;; fib: natural -> natural

;; Template instantiation

;;(define (fib n)

;; (cond [(< n 2) ...]

;; [(positive? n) .. (fib (- n 1))

;; .. (fib (- n 2)) ..)]))

;;)

;; Code:

(define (fib n)

(cond [(< n 2) 1]

[(positive? N) (+ (fib (- n 1)) (fib (- n 2)))]))

COMP 311, Fall 2020 21

Defining Add

(define (add m n)

(cond

[(zero? m) n]

[(positive? m) (add1 (add (sub1 m) n))]))

(define (right-add m n)

(cond

[(zero? n) m]

[(positive? n) (add1 (right-add m (sub1 n)))]))

COMP 311, Fall 2020 22

Defining Integers

• An integer is either:

• 0; or

• (add1 n) where n has the form 0 or (add1 …) [non-negative]; or

• (sub1 n) where n has the form 0 or (sub1 …) [non-positive].

• Recognizers:
• zero?: any -> bool

• positive?: any -> bool

• negative?: any -> bool

• In Racket, add1 and sub1 have been extended to all integers by
defining for all integers n :

• (add1 (sub1 n)) = n

• (sub1 (add1 n)) = n

• Hence, (add1 -1) and (sub1 0) are not errors.

COMP 311, Fall 2020 23

Another Inductive Type: Trees
• Labeled trees

• Organizational charts

• Decision trees

• Search trees

and many more!

COMP 311, Fall 2020 24

From Lists to Trees

Example of a List Data Definition
;; Given the built-in two argument constructor cons with

;; fields first and rest:

;; An alpha-list is

;; * empty, or

;; * (cons s los)

;; where s is an alpha and los is a alpha-list

Example of a Tree Data Definition
;; Given the struct definition

(define-struct person (name mother father))

; An ancestryTree is

; * empty (representing “unknown origin” or “none”)

; * (make-person n m f) (with two self-references)

; where n is a symbol, m is a person and f is a person

COMP 211, Spring 2009 25

Examples of ancestryTree

(make-person 'Bob

(make-person 'Jane empty

(make-person 'Tom

(make-person 'Cat empty empty) empty))

(make-person ’Rob empty

(make-person ’Sue empty

(make-person 'Ray empty

(make-person ’Johny empty empty)))))

COMP 211, Spring 2009 26

Template for ancestryTree

• In non-empty trees, we anticipate accessing each

child of the tree:

; f : ancestryTree -> ...

; (define (f ... at ...)

; (cond

; [(empty? at) ...]

; [else ... (person-name at) ...

; ... (person-mother c) ...

; ... (person-father c) ...)

COMP 211, Spring 2009 27

Template for Processing a Tree
• Recursion in type → recursion in template

; f : person -> ...

; (define (f ... c ...)

; (cond

; [(empty? c) ...]

; [else ... (person-name c) ...

; ... (f (person-mother c)) ...

; ... (f (person-father c))...)

COMP 211, Spring 2009 28

Example: Tree Depth

• Consider the following problem

• Given an ancestry tree, compute the maximum

number of generations for which we know

something about this person.

• Type Contract: person -> natural

• Examples (next slide)

• Template?

COMP 211, Spring 2009 29

Tree Depth Examples

(define cat (make-person 'Cat empty empty))

(define tom (make-person 'Tom cat empty))

(define jane (make-person empty tom))

(define johnny (make-person 'Johnny empty empty))

(define ray (make-person 'Ray empty johnny))

(define sue (make-person 'Sue empty ray))

(define rob (make-person 'Rob empty sue))

(define bob (make-person 'Bob jane rob))

(check-expect (max-depth cat) 1)

(check-expect (max-depth tom) 2)

(check-expect (max-depth jane) 3)

(check-expect (max-depth johnny) 1)

(check-expect (max-depth ray) 2)

(check-expect (max-depth sue) 3)

(check-expect (max-depth rob) 4)

(check-expect (max-depth bob) 5)

COMP 311, Fall 2020 30

Tree Depth Template Instantiation

;; max-depth : person -> natural

;; (define (max-depth c)

;; (cond

;; [(empty? c) ...]

;; [else ...

;; ... (max-depth (person-mother c)) ...

;; ... (max-depth (person-father c)) ...]))

COMP 211, Spring 2009 31

Tree Depth

;;max-depth : person -> natural

(define (max-depth c)

(cond

[(empty? c) 0]

[else (add1

(max (max-depth (person-mother c))

(max-depth (person-father c)))]))

;; Tests Done!

Examples (tests) can help in writing code.

COMP 311, Fall 2020 32

Binary Search Trees

COMP 211, Spring 2009 33

Binary Search Trees
(define-struct BTNode (num left right))

;; A binary-tree (BT) is either

;; * false, or

;; * (make-BTNode n l r)

;; where n is a number, l and r are BTs.

;; A binary-tree bt is is ordered iff either

;; * bt is empty, or

;; * bt has the form (make-BTNode n l r) where

;; Invariants:

;; 1. Numbers in l are less than or equal to n

;; 2. Numbers in r are greater than n

;; A BST is a binary-tree abt that is ordered.

