
1

Mutually Referential Data

Definitions and Help Functions

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2020 2

Mutually Referential Data Definitions

• Real world data tends to have more variety
(diversity?) than simple lists or binary trees.

• My favorite example: program expressions, often
called abstract syntax.

• Critical insight in defining program data; it has far
more structure than what normal input/output media
support, namely sequences of characters, arrays of
pixels.

• Applications typically need to build rich hierarchical
or linked representations. Circular linking (general
graphs) is messy; trees or dags (directed-acyclic
graphs) have a simple inductive structure

COMP 311, Fall 2020 3

Terminology
• Common terminology: mutually recursive instead of mutually referential.

• Which is better? I prefer recursive because it suggests repeating
structure which is the normal and attractive form of diversity typically
encountered in computation. Random interconnections are difficult to
process.

• Key insight: writing one function over a recursively interconnected
collection of types requires writing a collection of functions, one for each
form of data in the web of mutually recursive types. Many different forms
of data (constructors) and best handled by writing a separate function for
each kind.

• Each reference to a given mutually recursive type in a data domain
definition corresponds to a different recursive call to the appropriate
function in the corresponding template.

• Sound OO? There is a deep connection between the OO perspective
and the functional one.

COMP 311, Fall 2020 4

Canonical Example: Abstract Syntax

A Misleading Example (which is typical of introductions to abstract syntax):

; An expression is one of:
; - a number
; - a symbol
; - (make-mul e1 e2) where e1 and e2 are expressions
; - (make-add e1 e2) where e1 and e2 are expressions
; - (make-div e1 e2) where e1 and e2 are expressions
; - (make-sub e1 e2) where e1 and e2 are expressions
; given

(define-struct mul (left right))
(define-struct add (left right))
(define-struct div (left right))
(define-struct sub (left right))

; Examples
; 5
; 'f
; (make-mul 5 3)
; (make-add 5 3)
; (make-div 5 3)
; (make-sub 5 3)

COMP 311, Fall 2020 5

Templates.
; Template for processing such an expression
#|
(define (f ... exp ...)

(cond
[(number? exp) ...]
[(symbol? exp) ...]
[(mul? exp) ... (f ... (mul-left exp) ...) ... (f ... (mul-right exp) ...) ...]
[(add? exp) ... (f ... (add-left exp) ...) ... (f ... (add-right exp) ...) ...]
[(div? exp) ... (f ... (div-left exp) ...) ... (f ... (div-right exp) ...) ...]
[(sub? exp) ... (f ... (sub-left exp) ...) ... (f ... (sub-right exp) ...) ...]))

This template is rather large (six cases) and ugly; the only saving grace is that the four operations (+, *, -, /) all

have very similar form: they all process pairs of numbers. These four operations are often chosen as a starting

point because they are familiar infix algebraic operations that we all regularly use and understand.

But do we want to design our framework for expression processing based on this limited form of data? What

about binding local variables and retrieving their values. What about defining new functions. What about

passing functions as arguments? Can we accommodate recursion in the definition of program functions?

Suddenly the simple case splitting model suggested by the preceding template looks much too rigid and narrow.

We need a framework for handling many different linguistic constructions. The sublanguage with which we

started only contains applications of primitive functions to numbers.

We will look at much richer data definitions of abstract syntax later in the course.

COMP 311, Fall 2020 6

Function calls in templates
• Mutually recursive calls are part of each template

• Use of a mutually recursive type is just the same as a
recursive use of a type itself

• A set of mutually recursive type definitions is really one
big recursive type definition with multiple parts and each
part has a template

• To ensure termination, the structure of the function calls in
the template(s) is crucial for ensuring termination; each
recursive call should reduce “a measure of the arguments”
with values in a well-founded set.

• Not always possible; the desired behavior may include
divergence. Can you think of a real world sequential
program consuming a finite input that does not always
terminate?

COMP 311, Fall 2020 7

More about termination
• For the inductive (self-referential) types we saw before

today, a recursive functions terminates if

• it handles the base case(s) cleanly, and

• ir only make recursive calls on substructures of its primary
argument, e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the same

• Example: Imagine a type box that can contain bags, and a type

bag that can contain boxes. Why does the template ensure

termination?

• Any box will be bigger than any bag it contains

• Similarly for bags.

• No infinite descending chains of containment.

• Aside: what is a bag?

COMP 311, Fall 2020 8

Another Example (Unix File System)

; A file is either:

; a rawFile, or

; a dir (short for directory)

; A rawFile is (make-rawFile text) where text is a

; a char-list

; A dir is a structure

; (make-dir nFiles) where nFiles is a nFile-list

(define-struct dir (nFiles))

; An nFile is a structure

; (make-nFile name f) where name is a symbol and f is

; a file.

(define-struct nFile (name file))

COMP 311, Fall 2020 9

Mutually Recursive Templates
; file-f : f -> ...

(define (file-f ... f ...)

(cond [(rawFile? f) ...]

[(dir? f) ...

... (dir-f ... f ...)) ...]))

; dir-f : dir -> ...

(define (dir-f ... d ...)

... (nFiles-f ... (dir-nFiles d) ...) ...)

; nFiles-f: nFile-list -> ...

(define (nFiles-f ... nFiles ...) ;; nFiles is nFile-list

(cond [(empty? nFiles) ...]

[(cons? nFiles) ...

... (file-f ... (nFile-file (first nFiles)) ...) ...)

... (nFiles-f... (rest nFiles) ...) ...]

COMP 311, Fall 2020 10

Example function on file system

; find?: file symbol -> boolean

; Purpose: (find? f n) determines whether a file (which must

; be a directory for this query to be interesting) contains

; file with the name n.

; Instantiated template

#|

(define (find? f n)

(cond [(rawFile? f) false]

[(dir? f) ... (nFiles-find? (dir-nFiles f) n) ...)

(define (nFiles-find? nfl n)

(cond [(empty? nfl) ...]

[(cons? nfl)

... (nFile-find? (first nfl) n) ...

... (nFiles-find? (rest nfl) n) ...]))

(define (nFile-find? nf n)

... (nFile-name nf) ...

... (find? (nFile-file nf) n) ...)

|#

COMP 311, Fall 2020 11

Code
(define (find? f n)

(cond [(rawFile? f) false]

[(dir? f) (nFiles-find? (dir-nFiles d) n))

(define (nFiles-find? nfl n)

(cond [(empty? nfl) false]

[(cons? nfl)

(or (nFile-find? (first nfl) n)

(nFiles-find? (rest nfl) n)]))

(define (nFile-find? nf n)

(or (equal? (nFile-name nf) n)

(find? (nFile-file nf) n))

(define (file-find? f n)

(cond [(rawFile? f) false]

[(dir? f) (find? f n)])

