
1

Lambda the Ultimate and

Reduction Semantics

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Motivation for -notation

• In most functional languages, functions are data values. Origin: -
calculus 1930’s (Alonzo Church)

• Often, functions are used only once

• Examples: arguments to functions like

• map,

• filter,

• fold, and many more "higher-order" functions

• Sometimes we want to build new functions in the middle of a
computation.

• Local suffices but it is notationally clumsy for this purpose.

•  provides simpler, more concise notation

COMP 211, Spring 2009 3

Basic Idea

• -notation was invented by mathematicians. For example, given

f (x) = x2 + 1

what is f? f is the function that maps x to x2 + 1 which we might

write as

x  x2 + 1

The latter avoids naming the function. The notation

 x . x2 + 1 evolved instead of x  x2 + 1

• In Scheme, we write (lambda (x) (+ (* x x) 1))) instead of

 x . x2 + 1.

• (define (f x) (+ (* x x) 1)) abbreviates
(define f (lambda (x) (+ (* x x) 1)))

COMP 211, Spring 2009 4

Why ?

• The name was used by its

inventor

• Alonzo Church, logician, 1903-1995.

• Princeton, NJ

• Introduced lambda in 1930’s to

formalize mathematical proofs

Church is my academic great-grandfather

Alonzo Church -> Hartley Rogers ->

David Luckham -> Corky Cartwright

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

COMP 211, Spring 2009 5

Scope for a Lambda Abstraction
• Argument scope: (lambda (x1 ... xn) body) introduces the variables

x1 ... Xn which have body as their scope (except for holes)

• Example:

(lambda (x) (+ (* x x) 1)))

• Scope for variable introduced by define. At the top-level,

(define f rhs)

introduces the variable f which is visible everywhere (except inside

holes introduced by local definitions of f). Inside

(local [(define f1 rhs1) ... (define fn rhsn)) body)

• the variables f1 ... fn have the entire local as their scope.

• Recursion comes from define not lambda! It is possible to define

recursive functions solely using lambda (and whatever primitive

operations that appear in a define but it is surprisingly hard.

COMP 211, Spring 2009 6

Some PL researchers are crazy about !

Prof.

Phil Wadlerb

University of

Edinburgh

COMP 211, Spring 2009 7

Example

Now we can write the following program concisely

(define l '(1 2 3 4 5))

(define a

(local ((define (square x) (* x x)))

(map square l)))

as

(define l '(1 2 3 4 5))

(define a (map (lambda (x) (* x x)) l))

COMP 211, Spring 2009 8

Careful Definition of Syntax

• Official specification of what expressions that

use lambda can look like:

• exp = ... | (lambda (var*) exp)

• Interesting points

• Can have multiple arguments

• Can have no arguments

• Application of a function with no arguments

• (define blowup (lambda () (/ 1 0)))
(blowup)

COMP 211, Spring 2009 9

Reduction Semantics

• Simple Reduction Semantics: Essence of

Functional Programming

• Idea: Evaluation of expressions is a familiar idea from

grammar school.

• Grammar school:

evaluate parenthesized arithmetic expressions

• Functional programming:

evaluate arbitrary (functional program) text

COMP 211, Spring 2009 10

Synopsis

• Value are values are values …

• A value evaluates to itself so we stop

evaluation when we reduce our original

expression to a value.

• In most functional languages, always perform

leftmost reductions because order matters

COMP 311, Fall 2020 11

Evaluation of -expressions

• How do we evaluate a -expression

(lambda (x1 ... xn) body)

It's a value!

• What about -applications?

((lambda (x1 ... xn) body) v1 ... vn)

 body[x1v1 ... xnvn] (called -reduction)

Examples:

((lambda (x) (* x 5)) 4) => (* 4 5) => 20

((lambda (x) (x x)) (lambda (x) (x x)))

=> ((lambda (x) (x x)) (lambda (x) (x x)))

=> ((lambda (x) (x x)) (lambda (x) (x x)))

COMP 311, Fall 2020 12

Capture!

…

((lambda (x) (lambda (y) (y x))) bb

(lambda (z) (+ y z)))

=> (lambda (y) (y (lambda (z) (+ y z)))))

WRONG!

The meaning of y has changed! But it can never

happen in the evaluation of Racket program text

if lambda is the only binding construct. Racket

never reduces inside a lambda.

COMP 311, Fall 2020 13

Safe Substitution

• Must rename local variables in the code body

that is being modified by the substitution to avoid

capturing free variables in the argument

expression that is being substituted.

((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))

=> ((lambda (x) (lambda (f) (f x))) (lambda (z) (+ y z)))

=> (lambda (f) (f (lambda (z) (+ y z))))

COMP 311, Fall 2020 14

Comprehensive Reduction Rules

• The document LawsofEval.pdf is a

comprehensive description of the reduction

semantics of functional Racket.

You need to understand it in detail. We will

briefly review it now.

LawsOfEval.pdf

