
1

Functional Abstraction and Polymorphism

Corky Cartwright

Department of Computer Science

Rice University
(with thanks to John Greiner)

COMP 311, Fall 2020 2

Abstracting Designs

• The elimination of repetitions is the most
important step in the (program) editing
process – Textbook

• Software engineering term for revising a
program to make it better or accommodate an
extension: refactoring.

• Repeated code should be avoided at almost
all costs. Why? Revisions involved repeated
code are almost impossible to get right.

• Abstractions help us avoid this problem.

COMP 311, Fall 2020 3

The Need for Abstractions

;; contains-doll? : los -> boolean

;; to determine whether alos contains

;; the symbol 'doll

(define (contains-doll? alos)

(cond

[(empty? alos) false]

[else (or (symbol=? (first alos) 'doll)

(contains-doll? (rest alos)))]))

COMP 211, Spring 2009 4

The Need for Abstractions

;; contains-car? : los -> boolean

;; to determine whether alos contains

;; the symbol 'car

(define (contains-car? alos)

(cond

[(empty? alos) false]

[else (or (symbol=? (first alos) 'car)

(contains-car? (rest alos)))]))

COMP 311, Fall 2020 5

Creating Abstractions

How can we write one function that replaces

• contains-doll?

• contains-car?

• contains-pizza?

• contains-comp311?

• …

COMP 211, Spring 2009 6

Creating Abstractions

;; contains? : symbol, los -> boolean

;; to determine whether alos contains

;; the symbol s

(define (contains? s alos)

(cond

[(empty? alos) false]

[else (or (symbol=? (first alos) s)

(contains? s (rest alos)))]))

COMP 311, Fall 2020 7

Creating Abstractions, cont.

;; contains? : any list -> boolean

;; (contains? v alist) determines whether

;; alist contains the value v

(define (contains? v alist)

(cond

[(empty? alist) false]

[else (or (equals? (first alist) v)

(contains? v (rest alist)))]))

COMP 311, Fall 2020 8

Using Abstractions

• How do we use contains?

(contains? 'doll (list …))
(contains? 'car (list …))

• How can we better define contains-doll?, contains-car?

(define (contains-doll? alos) (contains? 'doll alos))
(define (contains-car? alos) (contains? 'car alos))

• This idea is called reuse. Let’s run with it!

COMP 311, Fall 2020 9

A more complex example

;; below : lon number -> lon

;; to construct a list of those numbers

;; in alon that are less than or equal to t

(define (below alon t)

(cond [(empty? alon) empty]

[else

(cond [(<= (first alon) t)

(cons (first alon)

(below (rest alon) t))]

[else (below (rest alon) t)])]))

COMP 311, Fall 2020 10

A more complex example …

;; above : lon number -> lon

;; to construct a list of those numbers

;; in alon that are greater than t

(define (above alon t)

(cond [(empty? alon) empty]

[else

(cond [(> (first alon) t)

(cons (first alon)

(above (rest alon) t))]

[else (above (rest alon) t)])]))

COMP 311, Fall 2020 11

Creating Abstractions

How can we write one function that replaces
• below

• above

• equal

• same-sign-as

• ...

COMP 311, Fall 2020 12

Creating Abstractions

;; filter1 : relOp lon number -> lon

;; to construct a list of those numbers n

;; in alon such that (test t n) is true

(define (filter1 test alon t)

(cond [(empty? alon) empty]

[else

(cond [(test (first alon) t)

(cons (first alon)

(filter1 test (rest alon) t))]

[else (filter1 test (rest alon) t)])]))

What did we do? Use a function as an argument!

relOp abbreviates relational operator

COMP 311, Fall 2020 13

Using Abstractions
• How do we denote (express) function values? In three different

ways. We will only use the simplest one for now: write the name

of a defined function (primitive, library, or program-defined):

(filter1 < (list ...) 17))

(filter1 > (list ...) 17))

• How can we define above, below without code duplication?

(define (below alon t) (filter1 <= alon t))
(define (above alon t) (filter1 > alon t))

• Both functions will work just as before!

• Can we do better? Example is warped by assumption that abstracted

function is binary. Why? No good reason. A unary filter is generally

superior.

.

COMP 311, Fall 2020 14

Repetition in Types

Repetition also happens in type definitions.

A lon is one of:

• empty

• (cons n alon),

where n is a number and alon is a lon.

A los is one of:

• empty

• (cons s alos),

where s is a symbol and alos is a los.

COMP 211, Spring 2009 15

Abstracting Types

In FP, called parametric polymorphism

In OOP, called genericity (generic types)

An X-list is one of:

• empty

• (cons x alox),

where x is an X and alox is an X-list.

A variable at the type level.

COMP 311, Fall 2020 16

Abstracting Types

Important! X-list is NOT any-list

Type Example(s)

number-list (list 1 2 3)

Symbol-list (list 'a 'b 'pizza)

any (list 1 2 3)
(list 'a 'b 'pizza)
empty
(list 1 'a +)

COMP 211, Spring 2009 17

Revisiting filter1

What is a more precise description of test’s type?

;; filter1 : relOp (listOf number) number ->

listOf number

;; (filter1 r alon n) constructs the list of numbers

;; n from alon such that (r t n) is true

where relOp is

(number number -> boolean)

COMP 311, Fall 2020 18

Revisiting filter1

Can we generalize the type of filter1?
;; filter1 : (number number -> boolean) (number-list) number ->

;; number-list

What is special about number? Does filter1 rely on any of the

properties of number?

No. It could be any type X.

;; filter1 : (X X -> boolean) X-list X -> X –list

Comment: filter1 is still lame. It should be unary:
;; filter : (X -> boolean) X-list -> X –list

COMP 311, Fall 2020 19

Final thoughts

• Function abstraction adds expressiveness to the

programming language

• Type abstraction (polymorphism) does the same for

type annotations

• They work well together, e.g. OCAML, Haskell.

• Function abstraction is very lightweight in Racket and

other functional languages. Rather clumsy (but still

important) in Java; inheritance is not a general but

better (notationally simpler) in many cases.

