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i Abstracting Designs

The elimination of repetitions is the most
|mportant step in the (program) editing
process — Textbook

. Software engineering term for revising a
program to make it better or accommodate an
extension: refactoring.

Repeated code should be avoided at almost
all costs. Why? Revisions involved repeated
code are almost impossible to get right.

. Abstractions help us avoid this problem.
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The Need for Abstractions

;3 contains-doll? : los -> boolean
;3 to determine whether alos contains
;3 the symbol 'doll
(define (contains-doll? alos)
(cond
[ (empty? alos) false]
[else (or (symbol=? (first alos) 'doll)
(contains-doll? (rest alos)))]))
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The Need for Abstractions

;3 contains-car? : los -> boolean
;; to determine whether alos contains
;3 the symbol 'car
(define (contains-car? alos)
(cond
[ (empty? alos) false]
[else (or (symbol=? (first alos) 'car)

(contains-car? (rest alos)))]))
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i Creating Abstractions

How can we write one function that replaces
. contains-doll?
. contains-car?
. contains-pizza?
. contains-comp311>?
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Creating Abstractions

;5 contains? : symbol, los -> boolean
;; to determine whether alos contains
;3 the symbol s
(define (contains? s alos)
(cond
[ (empty? alos) false]
[else (or (symbol=? (first alos) s)
(contains? s (rest alos)))]))
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Creating Abstractions, cont.

;3 contains? : any list -> boolean
;; (contains? v alist) determines whether
;3 alist contains the value v
(define (contains? v alist)
(cond
[ (empty? alist) false]
[else (or (equals? (first alist) v)
(contains? v (rest alist)))]))
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Using Abstractions

How do we use contains?

(contains? 'doll (list ..))
(contains? 'car (list ..))

How can we better define contains-doll?, contains-car?

(define (contains-doll? alos) (contains? 'doll alos))
(define (contains-car? alos) (contains? ‘car alos))

This idea is called reuse. Let’s run with it!
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i A more complex example

;5 below : lon number -> 1lon
;5 to construct a list of those numbers
55 1n alon that are less than or equal to t
(define (below alon t)
(cond [(empty? alon) empty]
[else
(cond [(<= (first alon) t)
(cons (first alon)
(below (rest alon) t))]
[else (below (rest alon) t)])]))
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i A more complex example ...

;5 above : lon number -> 1lon
;5 to construct a list of those numbers
;5 1n alon that are greater than t
(define (above alon t)
(cond [(empty? alon) empty]
[else
(cond [(> (first alon) t)
(cons (first alon)
(above (rest alon) t))]
[else (above (rest alon) t)])]))
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i Creating Abstractions

How can we write one function that replaces
. below
.- above
. equal
. same-sign-as
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Creating Abstractions

;; filterl : relOp lon number -> 1lon
;3 to construct a list of those numbers n
;3 in alon such that (test t n) is true
(define (filterl test alon t)
(cond [(empty? alon) empty]
[else
(cond [(test (first alon) t)
(cons (first alon)
(filterl test (rest alon) t))]
[else (filterl test (rest alon) t)])]))

What did we do? Use a function as an argument!
relop abbreviates relational operator
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sing Abstractions

*

How do we denote (express) function values? In three different
ways. We will only use the simplest one for now: write the name
of a defined function (primitive, library, or program-defined):

(filterl < (list ...) 17))
(filterl > (list ...) 17))

How can we define above, below without code duplication?

(define (below alon t) (filterl <= alon t))
(define (above alon t) (filterl > alon t))

Both functions will work just as before!

Can we do better? Example is warped by assumption that abstracted
function is binary. Why? No good reason. A unary filter is generally
superior.
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i Repetition In Types

Repetition also happens in type definitions.

/A lon IS one of:
°* empty

* (cons n alon),

\_ where n IS a number and alon IS a 1on.

~

/

/A 1os is one of:
°* empty
* (cons s alos),

\_ where s IS a symbol and alos IS a los.

~

/
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i Abstracting Types

"An x-1ist is one of: N
°* empty
* (cons x alox),

\_ where x Is an x and alox IS an x-list.

)

A variable at the type level.

In FP, called parametric polymorphism

In OOP, called genericity (generic types)
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i Abstracting Types

Type Example(s)
number-1list (list 1 2 3)
Symbol-1list (list 'a 'b 'pizza)
any (list 1 2 3)

(list 'a 'b 'pizza)
empty
(list 1 'a +)

Important! X-1ist IS NOT any-1list
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Revisiting filterl

What 1s a more precise description of test’s type?

;; filterl : relOp (listOf number) number ->

1istOf number
;; (filterl r alon n) constructs the list of numbers
;; n from alon such that (r t n) 1is true

where rei10p 1S

(number number -> boolean)
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i Revisiting filterl

Can we generalize the type of filter1?

;; filterl : (number number -> boolean) (number-list) number ->
33 number-1list

What is special about number? Does filterl rely on any of the
properties of number?

No. It could be any type X.

;; filterl : (X X -> boolean) X-list X -> X -list

Comment: filterl is still lame. It should be unary:
;; filter : (X -> boolean) X-list -> X -list
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i Final thoughts

Function abstraction adds expressiveness to the
programming language

Type abstraction (polymorphism) does the same for
type annotations

They work well together, e.g. OCAML, Haskell.

Function abstraction is very lightweight in Racket and
other functional languages. Rather clumsy (but still
Important) in Java, inheritance is not a general but
better (notationally simpler) in many cases.
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