!'_ Functional Abstraction and Polymorphism

Corky Cartwright
Department of Computer Science

Rice University
(with thanks to John Greiner)

i Abstracting Designs

The elimination of repetitions is the most
|mportant step in the (program) editing
process — Textbook

. Software engineering term for revising a
program to make it better or accommodate an
extension: refactoring.

Repeated code should be avoided at almost
all costs. Why? Revisions involved repeated
code are almost impossible to get right.

. Abstractions help us avoid this problem.

COMP 311, Fall 2020 2

The Need for Abstractions

;3 contains-doll? : los -> boolean
;3 to determine whether alos contains
;3 the symbol 'doll
(define (contains-doll? alos)
(cond
[(empty? alos) false]
[else (or (symbol=? (first alos) 'doll)
(contains-doll? (rest alos)))]))

COMP 311, Fall 2020

The Need for Abstractions

;3 contains-car? : los -> boolean
;; to determine whether alos contains
;3 the symbol 'car
(define (contains-car? alos)
(cond
[(empty? alos) false]
[else (or (symbol=? (first alos) 'car)

(contains-car? (rest alos)))]))

COMP 211, Spring 2009

i Creating Abstractions

How can we write one function that replaces
. contains-doll?
. contains-car?
. contains-pizza?
. contains-comp311>?

COMP 311, Fall 2020

Creating Abstractions

;5 contains? : symbol, los -> boolean
;; to determine whether alos contains
;3 the symbol s
(define (contains? s alos)
(cond
[(empty? alos) false]
[else (or (symbol=? (first alos) s)
(contains? s (rest alos)))]))

COMP 211, Spring 2009

Creating Abstractions, cont.

;3 contains? : any list -> boolean
;; (contains? v alist) determines whether
;3 alist contains the value v
(define (contains? v alist)
(cond
[(empty? alist) false]
[else (or (equals? (first alist) v)
(contains? v (rest alist)))]))

COMP 311, Fall 2020

Using Abstractions

How do we use contains?

(contains? 'doll (list ..))
(contains? 'car (list ..))

How can we better define contains-doll?, contains-car?

(define (contains-doll? alos) (contains? 'doll alos))
(define (contains-car? alos) (contains? ‘car alos))

This idea is called reuse. Let’s run with it!

COMP 311, Fall 2020 8

i A more complex example

;5 below : lon number -> 1lon
;5 to construct a list of those numbers
55 1n alon that are less than or equal to t
(define (below alon t)
(cond [(empty? alon) empty]
[else
(cond [(<= (first alon) t)
(cons (first alon)
(below (rest alon) t))]
[else (below (rest alon) t)])]))

COMP 311, Fall 2020

i A more complex example ...

;5 above : lon number -> 1lon
;5 to construct a list of those numbers
;5 1n alon that are greater than t
(define (above alon t)
(cond [(empty? alon) empty]
[else
(cond [(> (first alon) t)
(cons (first alon)
(above (rest alon) t))]
[else (above (rest alon) t)])]))

COMP 311, Fall 2020

10

i Creating Abstractions

How can we write one function that replaces
. below
.- above
. equal
. same-sign-as

COMP 311, Fall 2020

11

Creating Abstractions

;; filterl : relOp lon number -> 1lon
;3 to construct a list of those numbers n
;3 in alon such that (test t n) is true
(define (filterl test alon t)
(cond [(empty? alon) empty]
[else
(cond [(test (first alon) t)
(cons (first alon)
(filterl test (rest alon) t))]
[else (filterl test (rest alon) t)])]))

What did we do? Use a function as an argument!
relop abbreviates relational operator

COMP 311, Fall 2020 12

sing Abstractions

*

How do we denote (express) function values? In three different
ways. We will only use the simplest one for now: write the name
of a defined function (primitive, library, or program-defined):

(filterl < (list ...) 17))
(filterl > (list ...) 17))

How can we define above, below without code duplication?

(define (below alon t) (filterl <= alon t))
(define (above alon t) (filterl > alon t))

Both functions will work just as before!

Can we do better? Example is warped by assumption that abstracted
function is binary. Why? No good reason. A unary filter is generally
superior.

COMP 311, Fall 2020 13

i Repetition In Types

Repetition also happens in type definitions.

/A lon IS one of:
°* empty

* (cons n alon),

_ where n IS a number and alon IS a 1on.

~

/

/A 1os is one of:
°* empty
* (cons s alos),

_ where s IS a symbol and alos IS a los.

~

/

COMP 311, Fall 2020

14

i Abstracting Types

"An x-1ist is one of: N
°* empty
* (cons x alox),

_ where x Is an x and alox IS an x-list.

)

A variable at the type level.

In FP, called parametric polymorphism

In OOP, called genericity (generic types)

COMP 211, Spring 2009

15

i Abstracting Types

Type Example(s)
number-1list (list 1 2 3)
Symbol-1list (list 'a 'b 'pizza)
any (list 1 2 3)

(list 'a 'b 'pizza)
empty
(list 1 'a +)

Important! X-1ist IS NOT any-1list

COMP 311, Fall 2020

16

Revisiting filterl

What 1s a more precise description of test’s type?

;; filterl : relOp (listOf number) number ->

1istOf number
;; (filterl r alon n) constructs the list of numbers
;; n from alon such that (r t n) 1is true

where rei10p 1S

(number number -> boolean)

COMP 211, Spring 2009 17

i Revisiting filterl

Can we generalize the type of filter1?

;; filterl : (number number -> boolean) (number-list) number ->
33 number-1list

What is special about number? Does filterl rely on any of the
properties of number?

No. It could be any type X.

;; filterl : (X X -> boolean) X-list X -> X -list

Comment: filterl is still lame. It should be unary:
;; filter : (X -> boolean) X-list -> X -list

COMP 311, Fall 2020 18

i Final thoughts

Function abstraction adds expressiveness to the
programming language

Type abstraction (polymorphism) does the same for
type annotations

They work well together, e.g. OCAML, Haskell.

Function abstraction is very lightweight in Racket and
other functional languages. Rather clumsy (but still
Important) in Java, inheritance is not a general but
better (notationally simpler) in many cases.

COMP 311, Fall 2020 19

