
1

Functions as Values

Corky Cartwright

Department of Computer Science

Rice University

COMP 210, Fall 2007 2

Functional Abstraction

• A powerful tool

• Makes programs more concise

• Avoids redundancy

• Promotes “single point of control”

• Generally involves polymorphic
contracts (contracts containing type
variables)

• What we cover today for lists applies to
any recursive (self-referential) type

COMP 210, Fall 2007 3

Look for the pattern

One function:
; add1Each : number-list -> number-list

; adds one to each number in list

(define (add1Each l)

(cond [(empty? l) empty]
[else

(cons (add1 (first l))

(add1Each (rest l)))]))

COMP 210, Fall 2007 4

Look for the pattern

Another function:
; notEach : boolean-list -> boolean-list

; complements each boolean in the list

(define (notEach l)

(cond [(empty? l) empty]

[else (cons (not (first l))

(notEach (rest l)))]))

COMP 210, Fall 2007 5

Codify the pattern

Abstracting with respect to add1, not, and the element

type X in the lists:

; map : (X -> X), X-list -> X-list

; applies f to each element in l

(define (map f l)

(cond [(empty? l) empty]

[else (cons (f (first l))

(map f (rest l)))]))

COMP 210, Fall 2007 6

Generalize the pattern

Do all occurrences of X in contract of map need to be of

the same type?

; map : (X -> Y) X-list -> Y-list
; (map f l) returns the list consisting of f
; applied to each element in l

(define (map f l)
(cond [(empty? l) empty]

[else (cons (f (first l))
(map f (rest l)))]))

COMP 210, Fall 2007 7

Tip on Generalizing Types

• When we generalize, we only replace

• specific types (like number or symbol)

• by type variables (like X or Y)

• We never replace a type by the any type,

which actually means

• number | boolean | number-list | boolean-list |

number -> number | ...

• What goes wrong if we use any? We cannot

instantiate (bind) any as a custom type.

COMP 210, Fall 2007 8

Use the pattern

map can be used with any unary function.

• (map not l)

• (map sqrt l)

• (map length l)

• (map first l)

• (map symbol? l)

Note: Other recursive data types also have

maps!

COMP 210, Fall 2007 9

More about map

• Powerful tool for parallel computing!

• Has elegant properties (from

mathematics):
• (map f (map g l)) = (map (compose f g) l)

• Soon we will see how to define compose

• For fun: Checkout Google’s “map/reduce”

COMP 210, Fall 2007 10

Templates as functions

Recall the template for lists:
; (define (fn l)

; (cond

; [(empty? l) ...]

; [else ... (first l)

; ... (fn (rest l))

; ...]))

Can we construct a function foldr that takes the "…" for
empty? and the "…" for else as parameters init and op?
Yes. The op parameter must be a function because it
must process (first l) and (fn (rest l)).

COMP 210, Fall 2007 11

Templates as functions
It would look just like this:
;; the contract is not obvious;

(define (foldr op init l)

(cond [(empty? l) init]

[else

(op (first l)

(foldr op init (rest l)))]))

• Can we express all functions we’ve written using
foldr? What is foldl? foldr is right-associative.
foldl is left-associative.

• How can we compute foldl efficiently?

COMP 210, Fall 2007 12

map in terms of foldr

Can we write map in terms of foldr? Yes.

map : (X->Y) X-list -> Y-list

(define (map f l)
(foldr (lambda (x l)(cons (f x) l))

empty
l))

COMP 210, Fall 2007 13

What is the type of foldr?

foldr: (X Y Y) Y X-list Y

(foldr op init (list e1 .. en))

= (op e1 (.. (op en init) ..))

= e1 op (.. (en op init) ..)) [infix]

Reasoning: in (foldr op init l), l is an X-list, where X is

determined by the value of l. op is applied to (first l) and

(foldr op init (rest l)), implying op has inputs e1 and y of

type X and Y.
If op is a group operation, then init is the identity.

COMP 210, Fall 2007 14

What is the type of foldl?

foldl: (X Y Y) Y X-list Y

(foldl op init (list e1 .. en))

= (op en (.. (op e1 init) ..))

= (..((e1 op init) op e2).. op en) [infix]

Reasoning: in (foldl op init l), l is an X-list, where X is

determined by the value of l. op is initially applied to

(first l) and init, implying op has inputs e1 and y of type X

and Y.

If op is a group operation, then init is the identity.

COMP 311, Fall 2020 15

How does foldl process elements in

reverse order?

Key Insight: Use a help function with an accumulator.

Unexpected Payoff; the help function is tail-recursive which can be critical in
processing long lists.

Constraint: since elements are processed in reverse order, any order dependence
in the accumulated answer is reversed. In some cases, like the example below,
the accumulated answer is a list where order does matter, reversal of the initial

singleton lists is inconsequential in bottom-up mergeSort, which first creates a list
of singleton lists using an auxiliary function drop. The naïve coding of this
function has catastrophic behavior on long input lists.

Example:

drop: alpha-list -> alpha-list-list

(define (drop (loa)

(if (empty? loa) empty (cons (list (first loa)) (drop (rest loa))))

(check-expect (drop ‘(1 2 3)) ‘((1) (2) (3)))

COMP 311, Fall 2020 16

What is the Help Function for Drop

Insight: a help function that processes list elements in left-to-right order relies on
an accumulator parameter to hold the accumulated answer which is returned
when all of the elements in the list have been processed.

We can write such a help function for drop recognizing that the version relying
on a tail-recursive help function will reverse the order of the resulting list.

dropHelp: alpha-list alpha-list-list -> alpha-list-list

(define (dropHelp loa accum)

(if (empty? loa) empty

(dropHelp (rest loa) (cons (list (first loa)) accum))))

drop: alpha-list -> alpha-list-list

(define (drop loa) (dropHelp loa empty))

(check-expect (drop ‘(1 2 3)) ‘((3) (2) (1)))

Comparing foldr and foldl

• Efficiency: foldl is better both in space (where the difference is

enormous [small constant vs. linear!]) and time (where the

difference is modest because tail calls [jumps!] are cheaper to

execute than conventional function calls) at the cost of processing

the elements in reverse order. For very long input lists, foldr may

be unacceptable.

• Semantics: performing the aggregation operation (the function

parameter) in reverse order may or may not affect the answer. For

associative operations, by definition, it does not matter. But the

aggregation operations passed to with foldr, foldl may not be

associative. For example, what happens to map if we use our

definition based on foldr and replace foldr with foldl? The

resulting list is reversed!

COMP 210, Fall 2007 17

