
Comp 311: Sample Midterm Examination

October 17, 2020

Synopsis of the Racket Language for this Exam

All programs should be written in the DrRacket Intermediate Student Language with lambda. This
language includes the constructs: define-struct, define, cond, if, and, or, local, lambda, error

and function application together the primitive types: number, boolean, symbol, string, (listOf

T) for any type T , and n-ary function types A1...An− > B for any types A1, ..., An, B. The
primitive operations include

� all of the common arithmetic functions including add1, sub1, +, -, *, -;

� the standard relational operations <, <=, = >=, >;

� the boolean operation not

� the equal? operation on all data values;

� the list constructors empty and cons and accessor first and rest;

� recognizers for all of the major types and some commonly used subsets of those types in-
cluding: number? integer?, positive?, negative?, even?, odd?, rational?, inexact?, exact?,
boolean?, symbol?, empty?, cons?, procedure?;

� the list library functions list, append, length, and reverse; and

� the functional library functions map and filter.

The language constants include all numeric constants, all symbols, true, false, empty, and all
list constant abbreviations of the form ’(a (b) c).

This description of the Intermediate Student Language with lambda should be sufficient to do all
of the exam problems but it is not exhaustive. You may use language features and library functions
included in the Intermediate Student Language with lambda except those that are explicity forbidden
in the statement of a particular problem.

Note: This sample midterm is longer than what will actually be administered remotely as
the Comp 311 midterm, but it covers the topics and varieties of questions that could potentially
appear on the actual midterm more thoroughly than a representative sample midterm would. This
sample midterm was created from an old exam that predates Racket and many of the courses in
the existing Computer Science curriculum; there may be errors and omission in converting the text
to use Racket and Comp 311 conventions. Please send email to the instructor if you notice any
mistakes.

Enjoy!

1



Problem 1. (10 points) Given the Racket program:

(define (contains? los s)

(cond [(empty? los) false]

[else (cond [(equal? s (first los)) true]

[else (contains? (rest los) s)])]))

(define (& x y) ; & is a legal function name in Racket

(cond [x y]

[else false]))

(define (unary-compose f g)

(lambda (x) (f (g x))))

hand-evaluate each of the following four Racket expressions one-step-at-a-time. Use ellipsis where
the context is clear. Try to fit each step on one line. Omit repeating the definitions above.

1. (contains? (list ’a) ’b)

2. (& (= 1 0) (contains? empty ’c))

2



Problem 1 cont.

3. ((unary-compose first rest) (list ’a ’b))

4. ((unary-compose not (lambda (e) (contains? l ’a)) ’(a b)))

3



Problem 2. (10 pts) Which of the following expressions are Racket values? Answer yes or no for
each expression.

� foo

� ’foo

� ((lambda (x) (x x)) (lambda (x) (x x)))

� (list x y z)

� (lambda (x) (x x))

� cons?

� (list ’+ 7 5)

� (foo ’+ 7 5)

� (17)

� zero

4



Problem 3. (10 pts) Write a definition for the function mapcat that given a function f returns the
concatenation of the results of applying f to each element of the list. Note that mapcat is very
similar to map, but mapcat has type

(alpha -> (listOf beta)) (listOf alpha) -> (listOf beta)

instead of

(alpha -> beta) (listOf alpha) -> (listOf beta)

because it performs concatenation instead of consing. We are supplying the contract, purpose, and
a minimal set of test cases for mapcat. You are responsible for writing the template instantiation
and the code. You may not use the Racket library function foldr to write mapcat.

; mapcat: (alpha -> (listOf beta)) (listOf alpha) -> (listOf beta)

; Purpose (mapcat f lob) returns the list produced by concatenating (f (first lob)),

; ..., (f (last lob))

; Examples

(check-expect (mapcat (lambda (x) (list x x)) empty) empty)

(check-expect (mapcat (lambda (x) (list x x)) (list 1)) (list 1 1))

(check-expect (mapcat (lambda (x) (list x x)) (list 1 2 3)) (list 1 1 2 2 3 3))

; Template Instantiation

#|

(define (mapcat f loa)

|#

; Code

(define (mapcat f loa)

5



Problem 4. (10 pts) Recall the foldr functional discussed in class (and introduced in the book in
the exercises). It is defined by:

; foldr: (alpha beta -> beta) beta (listOf alpha) -> beta

; Purpose: (foldr op init loa) where loa = (list a1 a2 ... an) returns

; (op a1 (op a2 ... (op an init) ...)). If we use infix notation

; for op, the result is: a1 op (a2 op ... (an op init) ...)

; Examples:

(check-expect (foldr + 0 empty) 0)

(check-expect (foldr + 0 (list 1)) 1)

(check-expect (foldr * 1 (list 1 2)) 2)

(check-expect (foldr + 0 (list 1 2 3)) 6)

; Code:

(define (foldr op init loa)

(cond [(empty? loa) init]

[else (op (first loa) (foldr op init (rest loa)))]))

Write a definition for mapcat (as defined in the previous problem) using foldr instead of explicit
recursion. Since the preceding problem provided the contract, purpose, and examples for mapcat

and the template instantiation for this definition of mapcat is degenerate, all that you have to write
is the code.

(define (mapcat f loa)

6



Problem 5. (10 pts) Section 12.4 of the HTDP book shows how to write the function arrangements

using a complex help function insert-everywhere/in-all-words. This definition of arrangements

can be streamlined by using the library function map instead of structural recursion but still retains
the help function insert-everywhere/in-all-words. It is possible to solve this problem with a
simpler help function insert-everywhere provided that we use mapcat instead of map. Recall that
the type of the function passed to mapcat is different than the type of function passed map.

The following code contains the contract, purpose, and minimal tests for the functions arrangements
and insert-everywhere and the code for insert-everywhere. Write a definition for arrangements

that uses mapcat and only the help function insert-everywhere plus core primitive functions on
lists. Your definition of arrangements in conjunction with the definitions for insert-everywhere

and mapcat should constitute a complete program for arrangements. Write both a template instan-
tiation and the code.

;; Contract arrangements: (listOf symbol) -> (listOf (listOf symbol))

;; Purpose: (arrangements los) returns a list of all permutations of los

;; Examples

(check-expect (arrangements empty) (list empty))

(check-expect (arrangements ’(a)) ’((a)))

(check-expect (arrangements ’(a b)) ’((a b) (b a)))

; Template instantiation

#|

(define (arrangements los)

#|

;; Code

(define (arrangements los)

;; Contract insert-everywhere: symbol (listOf symbol) -> (listOf (listOf symbol))

;; Purpose: (insert-everywhere s los) returns a list of all lists of symbols

;; obtainable from los by inserting s in some position within los.

;; Examples:

(check-expect (insert-everywhere ’a empty) ’((a)))

(check-expect (insert-everywhere ’z ’(b)) ’((z b) (b z)))

(check-expect (insert-everywhere ’d ’(b c)) ’((d b c) (b d c) (b c d)))

(define (insert-everywhere s los)

(cond [(empty? los) (list (list s))]

[else (cons (cons s los)

(map (lambda (l) (cons (first los) l))

(insert-everywhere s (rest los))))]))

7



Problem 6. (10 pts.) Recall the definition of an (binary-tree-map-of alpha) ((BTMof alpha)

from Homework 2. (In Homework 2, we wrote (binary-tree-map-of alpha) as alpha-BTM Given the
structure definition,

(define-struct BTMNode (key val left right))

a (binary-tree-map-of alpha) ((BTMof alpha) for short) is either (i) the value empty; or (ii)
(make-BTMNode k s left right) where k (the key) is a number, s is an alpha, and left and right

are (BTMof alpha)’s. A (binary-search-tree-map-of alpha) (BSTMof slpha) is a (BTMof alpha) such
that for every node (make-BTMNode k s l r) in b, every key in l is less than or equal to k and k is
less than every key in r. In essence, the keys in a (BSTMof alpha) appear in sorted order (in the
print-out of its value).

Write a definition for the function BSTM-max that takes a (BSTMof alpha) and finds the maximum
key (extracted by applying BTMNode-key to a BTMNode node in b). On the degenerate BSTM empty,
BSTM-max returns #i-inf.0 which signfifies minus infinity, a number less than any exact number
(integer or rational). Hence (max n #i-inf.0) = n for any exact number n. We are providing the
contract, purpose, and minimal test data. Your task is to write the template instantiation and the
code. Your program should run in time proportional the depth of the b— not in time proportional
to the number of nodes in b. (Hint: you only recursive call should be (BSTM-max (BTMNode-right

b)) and you should only call it once.)

;; Node structure used to build BTMs and BSTMs

(define-struct BTMNode (key val left right))

; BSTM-max: (BSTMof alpha) -> number

; Purpose; (BSTM-max b) returns the maximum key in a BMTNode in b.

; Examples:

(define tree1 (make-BTMNode 50 ’foo false false))

(define tree2 (make-BTMNode 20 ’bar false tree1))

; (check-expect (BSTM-max empty) #i-inf.0) ; check-expect rejects inexact inputs

(check-expect (BSTM-max tree1) 50)

(check-expect (BSTM-max tree2) 50)

; Template Instantiation

#|

(define (BSTM-max b)

|#

; Code

(define (BSTM-max b)

8



Problem 7. (10 pts.) Write a definition for the function tree-map that takes a function f of type
(number symbol alpha alpha -> alpha), an intial value init of type alpha, and a BTM (which may
or may not be a BSTM depending on its usage) and returns a value of type alpha. For the degenerate
BTM empty, it returns the value init. For general (BTMof alpha)s, it returns the result of applying
f at each node (make-BTMNode k s left right) to k, s, and the alpha values obtained recursively
for left and right. We have provided the contract, purpose, and minimal test data for tree-map.
Your task is to write the template instantiation and the code.

Note this description sounds more complex that it really is because of the type parameter alpha.
To reduce confusion, think about the special case where alpha is number.

; tree-map: (number symbol alpha alpha -> alpha) alpha} BTM -> alpha

; Purpose (tree-map f init b) returns the result of "evaluating" the expression

; generated by replacing every leaf in b by init and every node (make-bt k s l r)

; by (f k s l’ r’) where l’ and r’ are the "translations" of l and r.

; Examples:

(define tree1 (make-bt 50 ’foo empty empty))

(define tree2 (make-bt 20 ’bar empty tree1))

(check-expect (tree-map (lambda (k val left right) (+ k left right)) 0 empty) 0)

(check-expect (tree-map (lambda (k val left right) (+ k left right)) 0 tree1) 50)

(check-expect (tree-map (lambda (k val left right) (+ k left right)) 0 tree2) 70)

; Template Instantiation:

#|

(define (tree-map f init b)

|#

; Code:

(define (tree-map f init b)

9



Problem 8. (10 pts)

� (5 pts) Write a new definition for BSTM-max that uses tree-map instead of explicit recursion.
Note that the running time of this version of BSTM-max is proportional to the number of nodes
in the tree, not its depth. (In fact, the code will work on BTM’s as well as BSTM’s.) You only
need to write the code.

; BSTM-max: (BSTM alpha) -> number

; Purpose; (BSTM-max b) returns the maximum value of (BTMNode-key bn) for any BTMNode

; in b.

; Examples:

(define tree1 (make-BTMNode 50 ’foo false false))

(define tree2 (make-BTMNode 20 ’bar false tree1))

; (check-expect (bst-max empty) #i-inf.0) ; does not accept inexact arguments

(check-expect (BSTM-max tree1) 50)

(check-expect (BSTM-max tree2) 50)

; Code

(define (BSTM-max b)

� (5 pts) Write a definition for the function BTM-depth using tree-map that takes a (BTMof alpha)

and returns its depth where depth is defined as the length of the longest path of BTMNodes
from a leaf to the root in the tree. The depth of empty is 0.

; BTM-depth: (BTMof alpha) -> number

; Purpose; (BTM-depth b) returns the maximum number of BTMNodes on a path

; from an empty leaf to the root. The depth of empty is 0 since it does not contain any BTMNodes.

; Examples:

(check-expect (BTM-depth empty) 0)

(check-expect (BTM-depth tree1) 1)

(check-expect (BTM-depth tree2) 2)

; Code:

(define (BTM-depth b)

10



Problem 9. (20 pts.) The HTDP book suggests doing merge-sort from the bottom up. Their
problem decomposition critically depends on two help functions (besides merge) whose direct imple-
mentations are not tail-recursive: make-singles (which we called drop in one of class lectures) and
merge-neighbors. The code for the direct implementations of these two functions is given below
together with contracts, purpose statements, and minimal tests. Your task is to rewrite both of
these functions to use tail recursion and modify their minimal tests, if necessary, for consistency
with behavior of the tail-recursive versions of these functions. Cross out any tests that you replace.
Include contracts, purpose statements, minimal tests (akin to those given below), and template
instantiations for any help functions you introduce. Note that the conversion to tail-recursive form
typically reverses the order of list results because the tail-recursive form processes the elements of
the input list in reverse order.

The function merge-neighbors appears on the next page. Note that the composition of these two
functions does not yield a merge-sort function. The merge-neighbors function must be repeatedly
applied in the body of merge-sort (reducing the length of an input list of length n to ceiling(n/2))
until it has length 1. Then the first (and only) element of this list is the sorted list is a sorted
permutation of the input list given to merge-sort.

; make-singles: (listOf number) -> (listOf (listOf number))

; Purpose: (make-singles ’(e1 ... en)) returns ’((e1) ... (en))

; Structural Recursion Examples:

(check-expect (make-singles (list 1 2)) (list (list 1) (list 2)))

(check-expect (make-singles empty empty))

; Structural Recursion Code

(define (make-singles lon) (map list lon)) ; list is treated as a unary function

11



Problem 9 cont.

; merge-neighbors: (listOf (Ascending (listOf number))) -> (listOf (Ascending (listOf number)))

; Purpose: (merge-neighbors lol) returns a list of the merges of successive pairs of lists

; with an unmerged list at the end when (length lol) is odd

; Structural Recursion Examples

(check-expect (merge-neighbors empty) empty)

(check-expect (merge-neighbors (list (list 0))) (list (list 0)))

(check-expect (merge-neighbors (list (list 1) (list 0) (list 2)) (list (list 0 1)) (list 2))

; Code

(define (merge-neighbors lol) ; unusual struct recursion; recurs on (rest (rest lol))

(cond [(empty? lol) empty] ;; an empty lol should only be be passed by recursive calls.

[else (let ([head (first lol)] [tail (rest lol)])

(if (empty? tail) lol

(cons (merge head (first tail)) (merge-neighbors (rest tail)))))]))

12



Problem 10. (20 pts.) Extra credit.

Revise the tree-map function so that it can express a solution to BSTM-max that runs in time
proportional to the depth of the tree. Show how to express the improved BSTM-max function using
your revised tree-map function. Hint: the BSTM-max function that you wrote in Problem 8 above
evaluates (BSTM-max (left b)) when it is applied to a node (make-BTMNode k s l r). If you make
the function argument f to tree-map simulate call-by-name evaluation (which requires revising the
definition of tree-map) of the arguments l and r, then (tree-map f init b) will descend into a
subtree of b only when f (which must be re-written to “force” simulated call-by-name arguments)
explicitly demands it.

13


