Problem 3. (20 points) Recall that Scheme let construct (which is not
recursive) expands into lambda expressions as follows:

(let [(x1 E1)
(x2 E2)
(xn En)]

E)}

abbreviates

((lambda (x1 x2 ... xn) E) E1 E2 ... En)

Similarly, the let* construct expands into let expressions as
follows:

(let* [(x1 E1)
(x2 E2)
(xn En)l]
E)

abbreviates

(let [(x1 E1)]
(let [(x2 E2)]

.“(let [(xn En)]
E)...))

The other binding form in the Scheme let family is letrec; it has the same
scoping rules as the Jam recursive let.

For each of the two expressions on the next page, circle each binding
occurrence of a variable and draw arrows from each bound occurrence back
to the corresponding binding occurence. For example, given the expression

(lambda (x) (+ x 1))
the correct answer is:

(lambda (x) (+ x 1))



1. (let*
[(fib (lambda (n)
(letrec
[(fibhelp (lambda (m fn-1 fn-2)
(let [(fn (+ fn-1 fn-2))]
(if (zero? m)
fn
(fibhelp (subl m) fn fn-1)))))]
(if (< n 2)
1
(fibhelp (subl n) 1 1)))))
(fib100 (fib 100))]
(x fib100 fib100))

2. (let* [(pair (lambda (x y)
(let [(x x)
(y v1
(lambda (msg)
(cond
[(eq? msg ’first) x]
[(eq? msg ’second) y]
[else (error ’pair "illegal method name ~a" msg)])))))
(pair (pair 1 2))]
(pair ’first))



