Some basic HPC
considerations

Paul Whitford
CTBP Computing Work Group
5/15/21

Objective

* Provide an overview of HPC strategies and considerations
* Not a programming guide

e Guide on how to be an excellent user (i.e. one that uses everything
and wastes nothing)

Topics

» Types of parallelization
* SIMD (vector-based acceleration)
e CPU-based openMP/threads
* CPU-based MPI

* GPU-based “massively” parallel calculations
* Discuss some pros/cons/limits of each level of parallelization

e Performance benchmarking

SIMD —single instruction, multiple data

Possible
* Vector-based calculations
° |dea: (a) Scalar Operation (b) SIMD Operation
* The CPU register may be able to hold more data than a single A |+ [edl - kg
variable ; ° A, B,
* Load multiple pieces of data into a single processible unit al+ e] = le x B,
* CPU will process identical instruction for all pieces at once - =
+ = A, B,
« Sometimes (auto)enabled at the compiler level A % €
* e.g. SSE, or AVX acceleration Al + |8 = e A %
* Coding can be very challenging
* e.g. non-bonded (vdW) routines in GROMACS Not possible
* Before each operation, data must be organized for SIMD
processing i + (el -
* Can improve performance on modern cores i | = [kl =
* More doesn’t always mean faster)
* E.g. AVX256 can be faster than AVX512, even though 512 processes A > e T
twice the number of vector elements per cycle)
* Slow down can be due to different clock speed with larger registers. ALY IS -

Thread-based parallelization (e.g. openMP)

 All threads must use a single node
* Each thread controls one compute core
* All threads share/access the same memory

» Usually good for parallelizing simple portions of code (e.g. “for” loops,
initialization, 1/0)
e Often only efficient for a low thread count (~10)
* Threads can compete for the same data, or wait for one another to finish.

 Simple to implement (available by default with most/all modern compilers)

* |dea: all threads execute the same instructions on different elements of
memory

* e.g.in a for loop over “i”, core 1 will runs i=0-100, cores 2 will handle i=101-200, etc
* Introduction at https://people.math.umass.edu/~johnston/PHI WG 2014/OpenMPSlides tamu sc.pdf

https://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

Example: finding the max and min values of a
gquantity in a trajectory

#pragma omp parallel for private(i,ii,j,Rtmp) reduction(min:R_min) reduction(max:R_max)

for{tint 1Ti=0;1i<frames;1i++)<
/* Here are the possible combination rulesx/
#ifdef CONTACTS
#ifdef C_TANH
Rtmp = CONTACTS_R_TANH(ii,ncoords,R,W,W1l,inputData);
#else
Rtmp = CONTACTS_R(ii,ncoords,R,W,inputData);
#endif
t#endif /% end CONTACTS*/

\#ifdef LINEAR
Rtmp=LINEAR_R(ii,ncoords,R,W);
#endif /x end LINEARx/

#ifdef POWPROD
Rtmp=POWPROD_R(ii,ncoords, endpointA, endpointB,coordD,R,W);
#endif /x end POWPRODx/

MPI — Message Passing Interface

* Each MPI “rank” has separate memory
* Each rank controls its own instructions
* Ranks may be on the same, or different, nodes

* Instructions on each node may be independent of one another
* e.g.rank 1 could work on 6-12 interactions, rank 2 works on PME, etc

e Usually good for paraIIellzmg complex portions of code, or large-memory calculations
(assuming memory doesn’t need to be shared)

* Performance strongly depends on the connection between ranks/nodes

* Latency (time waiting for communication to start) is often more important than bandwidth (speed
of data transfers once started)

* The faster the cores/nodes can communicate, the better calculations will scale

e NOT simple to implement

* Lots of room for inefficient calculations
* Possible that ranks will often be sitting idle

For a basic introduction, see http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml|

Multi-level parallelization

* May integrate MPI and openMP/threads in the same calculation

* |dea:

* Break a large calculation into chunks with MPI ranks (e.g. molecular system into sets
of atoms)

e Each chunk can have many cores working on it via threads
e Each rank has its own memory
* Within each rank, the threads share memory
* Can allows for very highly-scalable calculations
« Still typically limited to a low thread counts per rank (~10)
* May also integrate SIMD operations
* Nightmare to write the code...

Example of multi-level parallelization (as implemented in Gromacs)

Your system with N particles

MPI rank O
Particles 1 to N/2

MPI rank 1
Particles N/2+1 to
N

4 OMP threads per rank s|MD vector processing
each using 1 core with each thread/core

Hin
10

Hin
Hin

Hin
> 10

- L0
SuiN

v

v

v

v

v

ANNNAAN

GPUs — “extreme SIMD”

GPUs are massively parallel
e 1000s of cores

Data can only be processed in a SIMD-like form

Challenge:

* One needs to organize massive amounts of data for each
cycle of the GPU to process

* Organizing/streaming the data can rapidly become rate
limiting

 Since each cycle of the GPU can onlnprocess a single
instruction, conditional statements become extremely
slow (must execute all possible true and false variations
of each calculation)

If at all possible, leave GPU programming for the
pros

Can provide incredible speedup, or slowdown...

(a) Scalar Operation

Possible

+ |8l = ke
+ |8 = G
+ |8 | = |ges
+ | 8| = |gei

(b) SIMD Operation

Ao 80 CO

A, B, C’
+ =

A‘.' 82 CZ

Ay B, C,
Not possible

o + BD ez CO

B, | = |.¢&

A, B,| = | &

Ay B, | = &

GPU Challenges

* Data is not always easily streamlined for transfer to the GPU
e Communication between the GPU and CPU can be rate limiting

* |deally one loads a small amount of data on the GPU and does a lot
with it
» Best for repetitive matrix operations that have no conditionals

Example of multi-level parallelization with GPUs (as implemented in Gromacs)

GPU
4 OMP threads per rank s|MD vector processing

* each using 1 core with each thread/core
- - 00
> 1[0
MPI rank O
Particles 1 to N/2 /
B » |:| |:|
Your system with N particles ; >][]
\ > D D
" . 00
MPI rank 1
Particles N/2+1 to /
N — >][]
\ > |:| |:|

\ 4

How to figure out what works?

e Test it...

* Test for strong scaling

* Fixed-size calculation (e.g. N step simulation)
e Perform on 1 core, 2 cores,...
» “strong scaling” if time to solution scales with 1/# cores

* Test for weak scaling
e Variable-size calculations

* Perform:
* Small calculation on 1 core, larger on 2, larger on 4, etc.

* Weak scaling if time to solution remains constant.

Strong scaling strategy

* Design a simulation that is representative of the production calculation
* Typically the same system for fewer timesteps

Simulate the system using 1, 2, 4...2"n cores
Monitor the time to complete all non-initialization steps
* e.g. any one-time calculations (e.g. loading the input deck) should not be included
Plot 1/time versus number of cores
Compare to linear extrapolation from 1 core

Can quantify scalability as (time on 1 core)/(n*(time on n cores))
* If perfectly scalable, then each core will have 1/n of the load and take 1/n of the time
* If not perfectly scalable, each core will take longer than 1/n of the single-core time.

Test all combinations of parallelization (MPI, openMP, SIMD)
* The balance between ranks and threads can have tremendous impacts on performance
* More cores doesn’t always mean better performance

Example of strong scaling

=
o
Illll T

o
-
I

time steps (10%/day)
—
[

L Lol Lol !
1 10 100 1000
compute cores

Gromacs 5.1.4 with modified non-bonded kernels

Example of performance rollover

Strong Scaling Speedu
1024 g g op P

—+— Real speedup

512 ¢ Ideal speedup

256 | 128 cores is ideal
128 |
64 F

32 ¢

Speedup

16

1 2 4 8 16 32 64 128 256 512 1024
No of Processors

Image from https://hpc-wiki.info/hpc/Scaling_tutorial

Performance testing GPUs

* Very important to compare single-core performance with single-core+GPU
performance
* |f you don’t see a major speedup (100x, or more), perhaps the code is not very GPU-
friendly
* Can test for multiple-GPU performance
* No guarantee performance will be better
* Often performance degrades

* GPU performance can depend heavily on the type of calculation, even with
the same software (e.g. if PME or 6-12 interactions are offloaded to GPU)

* Different GPUs require different languages (e.g. CUDA, OpenCL)
* Same package may use completely different routines for each type of GPU
 Differences in performance may not be due to hardware

For when the code needs improvement...
High-performance tuning with HPC toolkit
HPC Toolkit developed at Rice (Mellor-Crummey Group)

HPC Toolkit functionality

Accurate performance

HPCToolkit Capabilities at a Glance
measurement

eege
{0

Effective performance analysis '
* Pinpointing scalability
bottlenecks

Scalability bottlenecks on

Attribute Costs to Code Pinpoint & Quantify Assess Imbalance
Scaling Bottlenecks
large-scale parallel systems
Scaling on multicore processors
* Assessing process variability
]

and Variability
Understanding temporal behavior

Ll B b L

Analyze Behavior

: . - = : e
Shift Blame from

over Time Symptoms to Causes

PARICE

% RICE

Experts are available to help you profile your code, even if you think it works well!

Associate Costs with Data

hpctoolkit.org

openMM specifics

* Limited MPI support

* Thread-based parallelization supported

* GPU support (obviously)

e Can run in GPU-only mode, GPU-CPU mode, or CPU mode

e Can work well for small systems

* Not known for being scalable, so very large systems may benefit from
other software

For description of algorithms, see https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659

AMD Resources

 GPU nodes:
1 x AMD EPYC 7642 CPU (48 cores at 2.3GHz)
8 x AMD Radeon Instinct MI50 32GB
512 GB RAM
* 80 in the POD cluster (Hosted by AMD)
* 19 on Rice Campus

 CPU nodes:
2 x AMD EPYC 7302 CPU (16 cores at 3.0GHz)
4 TB RAM

e 2 available at Rice

AMD POD Cluster Resources

* Hosted by AMD

* GPU nodes:
1 x AMD EPYC 7642 CPU (48 cores at 2.3GHz)
8 x AMD Radeon Instinct MI50 32GB
512 GB RAM

e 80 in the POD cluster
* 19 on Rice Campus

e Containers for Singularity are already available for openMM, Gromacs
2020, NAMD, LAMMPS

e Obtaining access takes a few days

