
Some basic HPC 
considerations

Paul Whitford
CTBP Computing Work Group

5/15/21



Objective

• Provide an overview of HPC strategies and considerations
• Not a programming guide
• Guide on how to be an excellent user (i.e. one that uses everything 

and wastes nothing)



Topics

• Types of parallelization
• SIMD (vector-based acceleration)
• CPU-based openMP/threads
• CPU-based MPI
• GPU-based “massively” parallel calculations

• Discuss some pros/cons/limits of each level of parallelization
• Performance benchmarking



SIMD – single instruction, multiple data
• Vector-based calculations
• Idea:

• The CPU register may be able to hold more data than a single 
variable

• Load multiple pieces of data into a single processible unit
• CPU will process identical instruction for all pieces at once

• Sometimes (auto)enabled at the compiler level
• e.g. SSE, or AVX acceleration

• Coding can be very challenging
• e.g. non-bonded (vdW) routines in GROMACS

• Before each operation, data must be organized for SIMD 
processing

• Can improve performance on modern cores
• More doesn’t always mean faster

• E.g. AVX256 can be faster than AVX512, even though 512 processes 
twice the number of vector elements per cycle

• Slow down can be due to different clock speed with larger registers.

Not possible

Possible



Thread-based parallelization (e.g. openMP)

• All threads must use a single node
• Each thread controls one compute core
• All threads share/access the same memory
• Usually good for parallelizing simple portions of code (e.g. “for” loops, 

initialization, I/O)
• Often only efficient for a low thread count (~10)

• Threads can compete for the same data, or wait for one another to finish.
• Simple to implement (available by default with most/all modern compilers)
• Idea: all threads execute the same instructions on different elements of 

memory
• e.g. in a for loop over “i”, core 1 will runs i=0-100, cores 2 will handle i=101-200, etc

• Introduction at https://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

https://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf


Example: finding the max and min values of a 
quantity in a trajectory



MPI – Message Passing Interface

• Each MPI “rank” has separate memory
• Each rank controls its own instructions
• Ranks may be on the same, or different, nodes
• Instructions on each node may be independent of one another

• e.g. rank 1 could work on 6-12 interactions, rank 2 works on PME, etc
• Usually good for parallelizing complex portions of code, or large-memory calculations 

(assuming memory doesn’t need to be shared)
• Performance strongly depends on the connection between ranks/nodes

• Latency (time waiting for communication to start) is often more important than bandwidth (speed 
of data transfers once started)

• The faster the cores/nodes can communicate, the better calculations will scale
• NOT simple to implement

• Lots of room for inefficient calculations
• Possible that ranks will often be sitting idle

For a basic introduction, see http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml



Multi-level parallelization

• May integrate MPI and openMP/threads in the same calculation
• Idea:

• Break a large calculation into chunks with MPI ranks (e.g. molecular system into sets 
of atoms)

• Each chunk can have many cores working on it via threads
• Each rank has its own memory
• Within each rank, the threads share memory
• Can allows for very highly-scalable calculations
• Still typically limited to a low thread counts per rank (~10)
• May also integrate SIMD operations
• Nightmare to write the code…



Your system with N particles

MPI rank 0
Particles 1 to N/2

MPI rank 1
Particles N/2+1 to 

N

4 OMP threads per rank 
each using 1 core

Example of multi-level parallelization (as implemented in Gromacs)

SIMD vector processing 
with each thread/core



GPUs – “extreme SIMD”

• GPUs are massively parallel
• 1000s of cores

• Data can only be processed in a SIMD-like form
• Challenge:

• One needs to organize massive amounts of data for each 
cycle of the GPU to process

• Organizing/streaming the data can rapidly become rate 
limiting

• Since each cycle of the GPU can only process a single 
instruction, conditional statements become extremely 
slow (must execute all possible true and false variations 
of each calculation)

• If at all possible, leave GPU programming for the 
pros

• Can provide incredible speedup, or slowdown…

Not possible

Possible



GPU Challenges

• Data is not always easily streamlined for transfer to the GPU
• Communication between the GPU and CPU can be rate limiting
• Ideally one loads a small amount of data on the GPU and does a lot 

with it
• Best for repetitive matrix operations that have no conditionals



Your system with N particles

MPI rank 0
Particles 1 to N/2

MPI rank 1
Particles N/2+1 to 

N

4 OMP threads per rank 
each using 1 core

Example of multi-level parallelization with GPUs (as implemented in Gromacs)

SIMD vector processing 
with each thread/core

GPU

GPU



How to figure out what works?

• Test it…
• Test for strong scaling

• Fixed-size calculation (e.g. N step simulation)
• Perform on 1 core, 2 cores,…

• “strong scaling” if time to solution scales with 1/# cores

• Test for weak scaling
• Variable-size calculations
• Perform:

• Small calculation on 1 core, larger on 2, larger on 4, etc.
• Weak scaling if time to solution remains constant.



Strong scaling strategy
• Design a simulation that is representative of the production calculation

• Typically the same system for fewer timesteps
• Simulate the system using 1, 2, 4…2^n cores
• Monitor the time to complete all non-initialization steps

• e.g. any one-time calculations (e.g. loading the input deck) should not be included
• Plot 1/time versus number of cores
• Compare to linear extrapolation from 1 core
• Can quantify scalability as (time on 1 core)/(n*(time on n cores))

• If perfectly scalable, then each core will have 1/n of the load and take 1/n of the time
• If not perfectly scalable, each core will take longer than 1/n of the single-core time.

• Test all combinations of parallelization (MPI, openMP, SIMD)
• The balance between ranks and threads can have tremendous impacts on performance
• More cores doesn’t always mean better performance



Example of strong scaling

Gromacs 5.1.4 with modified non-bonded kernels



Example of performance rollover

Image from https://hpc-wiki.info/hpc/Scaling_tutorial

128 cores is ideal



Performance testing GPUs

• Very important to compare single-core performance with single-core+GPU
performance
• If you don’t see a major speedup (100x, or more), perhaps the code is not very GPU-

friendly
• Can test for multiple-GPU performance

• No guarantee performance will be better
• Often performance degrades

• GPU performance can depend heavily on the type of calculation, even with 
the same software (e.g. if PME or 6-12 interactions are offloaded to GPU)
• Different GPUs require different languages (e.g. CUDA, OpenCL)

• Same package may use completely different routines for each type of GPU
• Differences in performance may not be due to hardware



For when the code needs improvement…
High-performance tuning with HPC toolkit

HPC Toolkit functionality
• Accurate performance 

measurement
• Effective performance analysis

• Pinpointing scalability 
bottlenecks

• Scalability bottlenecks on 
large-scale parallel systems

• Scaling on multicore processors
• Assessing process variability
• Understanding temporal behavior

HPC Toolkit developed at Rice (Mellor-Crummey Group)

Experts are available to help you profile your code, even if you think it works well!



openMM specifics

• Limited MPI support
• Thread-based parallelization supported
• GPU support (obviously)
• Can run in GPU-only mode, GPU-CPU mode, or CPU mode

• Can work well for small systems 
• Not known for being scalable, so very large systems may benefit from 

other software

For description of algorithms, see https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659



AMD Resources
• GPU nodes:

1 x AMD EPYC 7642 CPU (48 cores at 2.3GHz)
8 x AMD Radeon Instinct MI50 32GB
512 GB RAM
• 80 in the POD cluster (Hosted by AMD)
• 19 on Rice Campus

• CPU nodes:
2 x AMD EPYC 7302 CPU (16 cores at 3.0GHz)
4 TB RAM
• 2 available at Rice



AMD POD Cluster Resources
• Hosted by AMD
• GPU nodes:

1 x AMD EPYC 7642 CPU (48 cores at 2.3GHz)
8 x AMD Radeon Instinct MI50 32GB
512 GB RAM
• 80 in the POD cluster
• 19 on Rice Campus

• Containers for Singularity are already available for openMM, Gromacs
2020, NAMD, LAMMPS
• Obtaining access takes a few days


