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Abstract. In this paper, we introduce novel simple and efficient analy-
sis algorithms for scalar replacement and dead store elimination that are
built on Array SSA form, a uniform representation for capturing control
and data flow properties at the level of array or pointer accesses. We
present extensions to the original Array SSA form representation to cap-
ture loop-carried data flow information for arrays and pointers. A core
contribution of our algorithm is a subscript analysis that propagates ar-
ray indices across loop iterations. Compared to past work, this algorithm
can handle control flow within and across loop iterations and degrade
gracefully in the presence of unanalyzable subscripts. We also introduce
code transformations that can use the output of our analysis algorithms
to perform the necessary scalar replacement transformations (including
the insertion of loop prologues and epilogues for loop-carried reuse). Our
experimental results show performance improvements of up to 2.29× rel-
ative to code generated by LLVM at -O3 level. These results promise to
make our algorithms a desirable starting point for scalar replacement
implementations in modern SSA-based compiler infrastructures such as
LLVM.

Keywords: Static Single Assignment (SSA) form, Array SSA form,
Scalar Replacement, Load Elimination, Store Elimination.

1 Introduction

Scalar replacement is a widely used compiler optimization that promotes mem-
ory accesses, such as a read of an array element or a load of a pointer location, to
reads and writes of compiler-generated temporaries. Current and future trends
in computer architecture provide an increased motivation for scalar replacement
because compiler-generated temporaries can be allocated in faster and more
energy-efficient storage structures such as registers, local memories and scratch-
pads. However, scalar replacement algorithms in past work [6,9,7,3,14,4,2,21,5]
were built on non-SSA based program representations, and tend to be complex
to understand and implement, expensive in compile-time resources, and limited
in effectiveness in the absence of precise data dependences. Though the ben-
efits of SSA-based analysis are well known and manifest in modern compiler
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infrastructures such as LLVM [13], it is challenging to use SSA form for scalar
replacement analysis since SSA form typically focuses on scalar variables and
scalar replacement focuses on array and pointer accesses.

In this paper, we introduce novel simple and efficient analysis algorithms
for scalar replacement and dead store elimination that are built on Array SSA
form [12], an extension to scalar SSA form that captures control and data flow
properties at the level of array or pointer accesses. We present extensions to
the original Array SSA form representation to capture loop-carried data flow
information for arrays and pointers. A core contribution of our algorithm is a
subscript analysis that propagates array indices across loop iterations. Compared
to past work, this algorithm can handle control flow within and across loop it-
erations and degrades gracefully in the presence of unanalyzable subscript. We
also introduce code transformations that can use the output of our analysis algo-
rithms to perform the necessary scalar replacement transformations (including
the insertion of loop prologs and epilogues for loop-carried reuse). These results
promise to make our algorithms a desirable starting point for scalar replacement
implementations in modern SSA-based compiler infrastructures.

The main contributions of this paper are:

• Extensions to Array SSA form to capture inter-iteration data flow informa-
tion of arrays and pointers

• A framework for inter-iteration subscript analysis for both forward and back-
ward data flow problems

• An algorithm for inter-iteration redundant load elimination analysis using
our extended Array SSA form, with accompanying transformations for scalar
replacement, loop prologs and loop epilogues.

• An algorithm for dead store elimination using our extended Array SSA form,
with accompanying transformations.

The rest of the paper is organized as follows. Section 2 discusses background
and motivation for this work. Section 3 contains an overview of scalar replace-
ment algorithms. Section 4 introduces Array SSA form and extensions for inter-
iteration data flow analysis. Section 5 presents available subscript analysis, an
inter-iteration data flow analysis. Section 6 describes the code transformation
algorithm for redundant load elimination, and Section 7 describes the analysis
and transformations for dead store elimination. Section 8 briefly summarizes
how our algorithm can be applied to objects and while loops. Section 9 contains
details on the LLVM implementation and experimental results. Finally, Section
10 presents related work and Section 11 contains our conclusions.

2 Background

In this section we summarize selected past work on scalar replacement which
falls into two categories. 1) inter-iteration scalar replacement using non-SSA
representations and 2) intra-iteration scalar replacement using Array SSA form,
to provide the background for our algorithms. A more extensive comparison with
related work is presented later in Section 10.
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(a) Original Loop (b) After Scalar Replacement

1: for i = 1 to n do
2: B[i] = 0.3333 ∗ (A[i− 1] +A[i] + A[i+ 1])
3: end for

1: t0 = A[0]
2: t1 = A[1]
3: for i = 1 to n do
4: t2 = A[i+ 1]
5: B[i] = 0.3333 ∗ (t0 + t1 + t2)
6: t0 = t1
7: t1 = t2
8: end for

Fig. 1. Scalar replacement on a 1-D Jacobi stencil computation [1]

2.1 Inter-iteration Scalar Replacement

Figure 1(a) shows the innermost loop of a 1-D Jacobi stencil computation [1].
The number of memory accesses per iteration in the loop is four, which includes
three loads and a store. The read references involving array A present a reuse
opportunity in that the data read by A[i + 1] is also read by A[i] in the next
iteration of the loop. The same element is also read in the following iteration
by A[i − 1]. The reference A[i + 1] is referred to as the generator [7] for the
redundant loads, A[i] and A[i − 1]. The number of memory accesses inside the
loop could thus be reduced to one, if the data read by A[i + 1] is stored in a
scalar temporary which could be allocated to faster memory. Assuming n > 0,
the loop after scalar replacement transformation is shown in 1(b). Non-SSA
algorithms for inter-iteration scalar replacement have been presented in past
work including [6,7,9]. Of these, the work by Carr and Kennedy [7] is described
below, since it is the most general among past algorithms for inter-iteration
scalar replacement.

2.2 Carr-Kennedy Algorithm

The different steps in the Carr-Kennedy algorithm [7] are 1) Dependence graph
construction, 2) Control flow analysis, 3) Availability analysis, 4) Reachability
analysis, 5) Potential generator selection, 6) Anticipability analysis, 7) Depen-
dence graph marking, 8) Name partitioning, 9) Register pressure moderation, 10)
Reference replacement, 11) Statement insertion analysis, 12) Register copying,
13) Code motion, and 14) Initialization of temporary variables.

The algorithm is complex, requires perfect dependence information to be ap-
plicable and operates only on loop bodies without any backward conditional
flow. Further, the algorithm performs its profitability analysis on name parti-
tions, where a name partition consists of references that share values. If a name
partition is selected for scalar replacement, all the memory references in that
name partition will get scalar replaced, otherwise none of the accesses in the
name partition are scalar replaced.
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2.3 Array SSA Analysis

Array SSA is a program representation which captures precise element-level
data-flow information for array variables. Every use and definition in the ex-
tended Array SSA form has a unique name. There are 3 different types of φ
functions presented in [10].

1. A control φ (denoted simply as φ) corresponds to the φ function from scalar
SSA. A φ function is added for a variable at a join point if multiple definitions
of the variable reach that point.

2. A definition φ (dφ) [12] is used to deal with partially killing definitions. A
dφ function of the form Ak = dφ(Ai, Aj) is inserted immediately after each
definition of the array variable, Ai, that does not completely kill the array
value. Aj is the augmenting definition of A which reaches the point just
prior to the definition of Ai. A dφ function merges the value of the element
modified with the values that are available prior to the definition.

3. A use φ (uφ) [10] function creates a new name whenever a statement reads an
array element. The purpose of the uφ function is to link together uses of the
same array in control-flow order. This is used to capture the read-after-read
reuse (aka input dependence). A uφ function of the form Ak = uφ(Ai, Aj)
is inserted immediately after the use of an array element, Ai. Aj is the
augmenting definition of A which reaches the point just prior to the use of
Ai.

[10] presented a unified approach for the analysis and optimization of object
field and array element accesses in strongly typed languages using Array SSA
form. But the approach had a major limitation in that it does not capture
reuse across loop iterations. For instance, their approach cannot eliminate the
redundant memory accesses in the loop in Figure 1. In Section 4, we introduce
extensions to Array SSA form for inter-iteration analysis.

2.4 Definitely-Same and Definitely-Different Analyses

In order to reason about aliasing among array accesses, [10] describes two rela-
tions: DS represents the Definitely-Same binary relationship and DD represents
the Definitely-Different binary relationship. DS(a, b) = true if and only if a and
b are guaranteed to have the same value at all program points that are dom-
inated by the definition of a and dominated by the definition of b. Similarly,
DD(a, b) = true if and only if a and b are guaranteed to have different values
at all program points that are dominated by the definition of a and dominated
by the definition of b. The Definitely-same (DS) and Definitely-different (DD)
relation between two array subscripts can be computed using different methods
and is orthogonal to the analysis and transformation described in this paper.

3 Scalar Replacement Overview

In this section, we present an overview of the basic steps of our scalar replacement
algorithms: redundant load elimination and dead store elimination. To simplify
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the description of the algorithms, we consider only a single loop. We also assume
that the induction variable of the loop has been normalized to an increment
of one. Extensions to multiple nested loops can be performed in hierarchical
fashion, starting with the innermost loop and analyzing a single loop at a time.
When analyzing an outer loop, the array references in the enclosed nested loops
are summarized with subscript information [16].

The scalar replacement algorithms include three main steps:

1. Extended Array SSA Construction:
In the first step, the extended Array SSA form of the original program is
constructed. All array references are renamed and φ functions are introduced
as described in Section 4. Note that the extended Array SSA form of the pro-
gram is used only for the analysis (presented in step 2). The transformations
(presented in step 3) are applied on the original program.

2. Subscript analysis:
Scalar replacement of array references is based on two subscript analyses: (a)
available subscript analysis identifies the set of redundant loads in the given
loop, which is used for redundant load elimination (described in Section 6);
(b) dead subscript analysis identifies the set of dead stores in the given loop,
which is used in dead store elimination (described in Section 7). These anal-
yses are performed on extended Array SSA form and have an associated
tuning parameter: the maximum number of iterations for which the analysis
needs to run.

3. Transformation:
In this step, the original program is transformed using the information pro-
duced by the analyses described in step 2. For redundant load elimination,
this involves replacing the read of array elements with read of scalar tem-
poraries, generating copy statements for scalar temporaries and generating
statements to initialize the temporaries. The transformation is presented in
Section 6. Dead store elimination involves removing redundant stores and
generating epilogue code as presented in Section 7.

4 Extended Array SSA Form

1: for i = 1 to n do
2: if A[B[i]] > 0 then
3: A[i+1] = A[i-1] + B[i-1]
4: end if
5: A[i] = A[i] + B[i] + B[i+1]
6: end for

Fig. 2. Loop with redundant loads and stores

In order to model inter-
iteration reuse, the lattice
operations of the φ function
in the loop header needs
to be handled differently
from the rest of the con-
trol φ functions. They need
to capture what array el-
ements are available from
prior iterations. We introduce a header φ (hφ) node in the loop header. We
assume that every loop has one incoming edge from outside and thus, one of the
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arguments to the hφ denotes the SSA name from outside the loop. For each back
edge from within the loop, there is a corresponding SSA operand added to the hφ
function. Figure 2 shows a loop from [11, p. 387] extended with control flow. The
three address code of the same program is given in 3(a) and the extended Array
SSA form is given in 3(b). A1 = hφ(A0, A12) and B1 = hφ(B0, B10) are the two
hφ nodes introduced in the loop header. A0 and B0 contain the definitions of
array A which reaches the loop preheader.

While constructing Array SSA form, dφ and uφ functions are introduced first
into the program. The control φ and hφ functions are added in the second phase.
This will ensure that the new SSA names created due to the insertion of uφ and
dφ nodes are handled correctly. We introduce at most one dφ function for each
array definition and at most one uφ function for each array use. Past work have
shown that the worst-case size of the extended Array SSA form is proportional
to the size of the scalar SSA form that would be obtained if each array access is
modeled as a definition [10]. Past empirical results have shown the size of scalar
SSA form to be linearly proportional to the size of the input program [8].

(a) Three Address Code (b) Array SSA form

1: for i = 1 to n do
2: t1 = B[i]
3: t2 = A[t1]
4: if t2 > 0 then
5: t3 = A[i− 1]
6: t4 = B[i− 1]
7: t5 = t3 + t4
8: A[i+ 1] = t5
9: end if
10: t6 = A[i]
11: t7 = B[i]
12: t8 = B[i+ 1]
13: t9 = t6 + t7
14: t10 = t9 + t8
15: A[i] = t10
16: end for

1: A0 = ...
2: B0 = ...
3: for i = 1 to n do
4: A1 = hφ(A0, A12)
5: B1 = hφ(B0, B10)
6: t1 = B2[i]
7: B3 = uφ(B2, B1)
8: t2 = A2[t1]
9: A3 = uφ(A2, A1)
10: if t2 > 0 then
11: t3 = A4[i− 1]
12: A5 = uφ(A4, A3)
13: t4 = B4[i− 1]
14: B5 = uφ(B4, B3)
15: t5 = t3 + t4
16: A6[i+ 1] = t5

17: A7 = dφ(A6, A5)
18: end if
19: A8 = φ(A3, A7)
20: B6 = φ(B3, B5)
21: t6 = A9[i]
22: A10 = uφ(A9, A8)
23: t7 = B7[i]
24: B8 = uφ(B7, B6)
25: t8 = B9[i+ 1]
26: B10 = uφ(B9, B8)
27: t9 = t6 + t7
28: t10 = t9 + t8
29: A11[i] = t10
30: A12 = dφ(A11, A10)
31: end for

Fig. 3. Example Loop and extended Array SSA form

5 Available Subscript Analysis

In this section, we present the subscript analysis which is one of the key ingre-
dients for inter-iteration redundant load elimination (Section 6) and dead store
elimination transformation (Section 7). The subscript analysis takes as input the
extended Array SSA form of the program and a parameter, τ , which represents
the maximum number of iterations across which inter-iteration scalar replace-
ment will be applied on. An upper bound on τ can be obtained by computing the
maximum dependence distance for the given loop, when considering all depen-
dences in the loop. However, since smaller values of τ may sometimes be better
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due to register pressure moderation reasons, our algorithm views τ as a tuning
parameter. This paper focuses on the program analysis foundations of our scalar
replacement approach — it can be combined with any optimization strategy for
making a judicious choice for τ .

Our analysis computes the set of array elements that are available at all the φ,
uφ, dφ and hφ nodes. The lattice element for an array variable, A, is represented
as L(A). The set denoted by L(A), represented as SET(L(A)), is a subset of
UA
ind × Z≥0, where UA

ind denotes the universal set of index values for A and Z≥0

denotes the set of all non-negative integers. The lattice elements are classified
as:

1. L(Aj) = � ⇒ SET(L(Aj)) = UA
ind × Z≥0

This case means that all the elements of A are available at Aj .
2. L(Aj) = 〈(i1, d1), (i2, d2)...〉 ⇒ SET(L(Aj)) = {(i1, d1), (i2, d2), ...}

This means that the array element A[i1] is available at Aj and is generated
in the k − d1th iteration, where k denotes the current iteration. Similarly
A[i2] is available at Aj and is generated in the k− d2th iteration and so on.
d1, d2, ... is used to track the number of iterations that have passed since
the corresponding array element was referenced.

3. L(Aj) = ⊥ ⇒ SET(L(Aj)) = {}
This case means that, according to the current stage of analysis none of the
elements in A are available at Aj .

The lattice element computations for the SSA nodes is defined in terms of
shift, join, insert and update operations. The shift operation is defined as
follows, where step1 denotes the coefficient of the induction variable in i1, step2
denotes the coefficient of the induction variable in i2 and so on.

shift({(i1, d1), (i2, d2), . . .}) = {(i1 − step1, d1 + 1), (i2 − step2, d2 + 1), . . .}
The definitions of join, insert and update operations are given below.

join(L(Ap),L(Aq)) = {(i1, d)|(i1, d1) ∈ L(Ap) and ∃ (i′1, d
′
1) ∈ L(Aq) and

DS(i1, i′1) = true and d = max(d1, d
′
1)}

insert((i′,d′),L(Ap))={(i1, d1)|(i1, d1)∈L(Ap) andDD(i′, i1)= true}∪{(i′, d′)}

update((i′,d′),L(Ap))={(i1, d1)|(i1, d1)∈L(Ap) andDS(i′, i1)=false}∪{(i′, d′)}

Figures 4, 5, 6 and 7 describe the lattice element computations for the SSA
nodes corresponding to dφ, uφ, φ, and hφ respectively. The lattice values are
initialized as follows:

L(Ai) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(x, 0)} Ai is a definition of the form Ai[x]

{(x, 0)} Ai is a use of the form Ai[x]

� Ai is defined outside the loop

⊥ Ai is a SSA definition inside the loop
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Figure 8 illustrates available subscript analysis on the loop in Figure 3.
We now present a brief complexity analysis of the available subscript analysis.

Let k be the total number of loads and stores of different array elements inside
a loop. The number of dφ and uφ nodes inside the loop will be O(k). Based on
past empirical measurements for scalar SSA form [8], we can expect that the
total number of φ nodes created will be O(k). Our subscript analysis involves
τ iterations in the SSA graph [8]. Therefore, in practice the complexity of the
available subscript analysis is O(τ × k), for a given loop.

L(Ar) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � � �
L(Aq) = 〈(i′, d′)〉 � insert((i′, d′), 〈(i1, d1), . . .〉) 〈(i′, d′)〉
L(Aq) = ⊥ ⊥ ⊥ ⊥

Fig. 4. Lattice computation for L(Ar) = Ldφ(L(Aq),L(Ap)) where Ar := dφ(Aq, Ap)
is a definition φ operation

L(Ar) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � � �
L(Aq) = 〈(i′, d′)〉 � update((i′, d′), 〈(i1, d1), . . .〉) L(A1)

L(Aq) = ⊥ � L(Ap) ⊥

Fig. 5. Lattice computation for L(Ar) = Luφ(L(Aq),L(Ap)) where Ar := uφ(Aq, Ap)
is a use φ operation

L(Ar) = L(Aq) � L(Ap) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � L(Ap) ⊥
L(Aq) = 〈(i′1, d′1), . . .〉 L(Aq) join(L(Aq),L(Ap)) ⊥
L(Aq) = ⊥ ⊥ ⊥ ⊥

Fig. 6. Lattice computation for L(Ar) = Lφ(L(Aq),L(Ap)), where Ar := φ(Aq, Ap) is
a control φ operation

L(Ar) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � L(Ap) ⊥
L(Aq) = 〈(i′1, d′1), . . .〉 shift(L(Aq)) join(shift(L(Aq)),L(Ap)) ⊥
L(Aq) = ⊥ ⊥ ⊥ ⊥

Fig. 7. Lattice computation for L(Ar) = Lhφ(L(Aq),L(Ap)), where Ar := hφ(Aq, Ap)
is a header φ operation
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Iteration 1 Iteration 2

L(A1) ⊥ {(i− 1, 1)}
L(B1) ⊥ {(i− 1, 1), (i, 1)}
L(B3) {(i, 0)} {(i− 1, 1), (i, 0)}
L(A3) {(t, 0)} {(i− 1, 1), (t, 0)}
L(A5) {(i− 1, 0), (t, 0)} {(i− 1, 0), (t, 0)}
L(B5) {(i− 1, 0), (i, 0)} {(i− 1, 0), (i, 0)}
L(A7) {(i− 1, 0), (i+ 1, 0)} {(i− 1, 0), (i+ 1, 0)}
L(A8) ⊥ {(i− 1, 1)}
L(B6) {(i, 0)} {(i− 1, 1), (i, 0)}
L(A10) {(i, 0)} {(i− 1, 1), (i, 0)}
L(B8) {(i, 0)} {(i− 1, 1), (i, 0)}
L(B10) {(i, 0), (i+ 1, 0)} {(i− 1, 1), (i, 0), (i+ 1, 0)}
L(A12) {(i, 0)} {(i− 1, 1), (i, 0)}

Fig. 8. Available Subscript Analysis Example

6 Load Elimination Transformation

In this section, we present the algorithm for redundant load elimination. There
are two steps in the algorithm: Register pressure moderation described in Sec-
tion 6.1, which determines a subset of the redundant loads for load elimination
and Code generation described in Section 6.2, which eliminates the redundant
loads from the loop.

The set of redundant loads in a loop is represented using UseRepSet, a set
of ordered pairs of the form (Aj [x], d), where the use Aj [x] is redundant and d
is the iteration distance from the generator to the use. d = 0 implies an intra-
iteration reuse and d ≥ 1 implies an inter-iteration reuse. UseRepSet is derived
from the lattice sets computed by available subscript analysis.

UseRepSet ={ (Ai[x], d) | ∃ (y, d) ∈ L(Aj), Ak = uφ(Ai, Aj), DS(x, y)= true}

For the loop in Figure 3, UseRepSet = {(B2[i], 1), (A4[i − 1], 1), (B4[i − 1], 1),
(B7[i], 0)}

6.1 Register Pressure Moderation

Eliminating all redundant loads in a loop may lead to generation of spill code
which could counteract the savings from scalar replacement. To prevent this, we
need to choose the most profitable loads which could be scalar replaced using
the available machine registers. We define the most profitable loads as the ones
which requires the least number of registers.

When estimating the total register requirements for scalar replacement, all
redundant uses which are generated by the same reference need to be considered
together. To do this UseRepSet is partitioned into U1, ...Uk, such that generators
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of all uses in a partition are definitely-same. A partition represents a set of uses
which do not dominate each other and are generated by the same use/def. A
partition Um is defined as follows, where step is the coefficient of the induction
variable in the subscript expression.

Um = {(Ai[xi], di) | ∀ (Aj [xj ], dj) ∈ Um,DS(xi + di × step, xj + dj × step) =
true}

If the array index expression is loop-invariant, the number of registers required
for its scalar replacement is one. In other cases, the number of registers required
for eliminating all the loads in the partition Up is given by

NumRegs(Up) = {di + 1 | (Ai[xi], di) ∈ Up ∧ ∀ (Aj [xj ], dj) ∈ Up, di ≥ dj}
For the loop in Figure 3, the four elements in UseRepSet will fall into four

different partitions: {(B2[i], 1)}, {(A4[i−1], 1)}, {(B4[i−1], 1)}, {(B7[i], 0)}. The
total number of registers required for the scalar replacement is 7.

The partitions are then sorted in increasing order of the number of registers
required. To select the redundant loads for scalar replacement, we use a greedy
algorithm in which at each step the algorithm chooses the first available partition.
The algorithm terminates when the first available partition does not fit into the
remaining machine registers.

6.2 Code Generation

The inputs to the code generation algorithm are the intermediate representation
of the loop body, the Array SSA form of the loop, and the subset of UseRepSet
after register pressure moderation. The code transformation is performed on the
original input program. The extended Array SSA form is used to search for the
generator corresponding to a redundant use. The algorithm for the transforma-
tion is shown in Figure 9. A scalar temporary, A tx is created for every array
access A[i] that is scalar replaced where, DS(x, i) = true. In the first stage of the
algorithm all redundant loads are replaced with a reference to a scalar temporary
as shown in lines 2-11 of Figure 9. For example the reads of array elements B[i]
in line 1, A[i− 1] in line 5, B[i− 1] in line 6 and B[i] in line 11 of Figure 11(a)
are replaced with reads of scalar temporaries as shown in Figure 11(b). The loop
also computes the maximum iteration distance for all redundant uses to their
generator. It also moves loop invariant array reads to loop preheader. The loop
in lines 15-27 of Figure 9 generates copy statements between scalar temporaries
and code to initialize scalar temporaries if it is a loop carried reuse. The code to
initialize the scalar temporary is inserted in the loop preheader, the basic block
that immediately dominates the loop header. Line 2-4 in Figure 11(b) is the
code generated to initialize the scalar temporaries and lines 23-25 are the copy
statements generated to carry values across iterations. The loop in lines 20-24
of Figure 9 guarantees that the scalar temporaries have the right values if the
value is generated across multiple iterations. Lines 28-35 of Figure 9 identifies
the generators and initializes the appropriate scalar temporaries. The generators
are identified using the recursive search routine SEARCH, which takes two argu-
ments: The first argument is a SSA function Aj and the second argument is an
index i. The function returns the set of all uses/defs which generates A[i]. The
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Input: Input loop, Array SSA form of the loop and UseRepSet
Output: Loop after eliminating redundant loads
1: maxd ← 0
2: for all (Ai[x], d) in UseRepSet do
3: Replace lhs := Ai[x] by lhs := A tx
4: if d > maxd and x is not a loop invariant then
5: maxd ← d
6: end if
7: if x is loop invariant then
8: Insert initialization of A tx in the loop preheader
9: UseRepSet ← UseRepSet − (Ai[x], d)
10: end if
11: end for
12: for all (Ai[x], d) in UseRepSet do
13: n ← x
14: dist ← d
15: while dist 	= 0 do
16: if A tn is not initialized then
17: Insert A tn := A tn+step at the end of loop

body
18: Insert initialization of A tn in the loop

preheader
19: end if
20: for all defs Aj [k] := rhs do
21: if DS(n, k) then
22: Replace the def by

A tn := rhs;Aj [k] := A tn
23: end if
24: end for
25: dist ← dist− 1
26: n ← n+ step
27: end while
28: genset ← search(Ah, n) where Ah is the hφ
29: for all uses Aj ∈ genset do
30: Replace the use by A tn := Aj [k]; lhs := A tn
31: end for
32: for all defs Aj ∈ genset do
33: Replace the def by A tn := rhs;Aj [k] := A tn
34: end for
35: end for
36: Introduce a maxd-trip count test for the scalar replaced loop

Fig. 9. Redundant Load Elimination Transformation Algorithm
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1: procedure search(A, i)
2: if A = hφ(A1, .., Ak) then
3: return ∪j=2,k search(Aj , i)
4: end if
5: if A = φ(A1, .., Ak) then
6: return ∪j=1,k search(Aj , i)
7: end if
8: if A = dφ(A1, A2) then
9: if L(A1) = {k} and DS(i, k) then
10: return {A1}
11: else
12: return search(A2, i)
13: end if
14: end if
15: if A = uφ(A1, A2) then
16: if L(A1) = {k} and DS(i, k) then
17: return {A1}
18: else
19: return search(A2, i)
20: end if
21: end if
22: end procedure

Fig. 10. Subroutine to find the set of generators

(a) Original Loop (b) After Redundant Load Elimination

1: for i = 1 to n do
2: t1 = B[i]
3: t2 = A[t1]
4: if t2 > 0 then
5: t3 = A[i− 1]
6: t4 = B[i− 1]
7: t5 = t3 + t4
8: A[i+ 1] = t5
9: end if
10: t6 = A[i]
11: t7 = B[i]
12: t8 = B[i+ 1]
13: t9 = t6 + t7
14: t10 = t9 + t8
15: A[i] = t10
16: end for

1: if n > 2 then
2: A ti−1 = A[0]
3: B ti = B[1]
4: B ti−1 = B[0]
5: for i = 1 to n do
6: t1 = B ti
7: t2 = A[t1]
8: if t2 > 0 then
9: t3 = A ti−1

10: t4 = B ti−1

11: t5 = t3 + t4
12: A[i+ 1] = t5
13: end if
14: A ti = A[i]
15: t6 = A ti

16: t7 = B ti−1

17: B ti+1 = B[i+ 1]
18: t8 = B ti+1

19: t9 = t6 + t7
20: t10 = t9 + t8
21: A ti = t10
22: A[i] = A ti
23: A ti−1 = A ti
24: B ti−1 = B ti
25: B ti = B ti+1

26: end for
27: else
28: original loop as shown in

Figure 11(a)
29: end if

Fig. 11. Redundant Load Elimination Example
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SEARCH routine is given in Figure 10. The routine takes at most one backward
traversal of the SSA graph to find the set of generators. Line 36 of the load
elimination algorithm inserts a loop trip count test around the scalar replaced
loop.

We now present a brief complexity analysis of the load elimination transfor-
mation described in Figure 9. Let k be the total number of loads and stores of
array elements inside the loop and let l be the number of redundant loads. The
algorithm makes l traversals of the SSA graph and examines the stores inside the
loop a maximum of l× d, where d is the maximum distance from the generator
to the redundant use. Therefore the worst case complexity of the algorithm in
Figure 9 for a given loop is O((d + 1)× l × k).

(a) Original Loop (b) After Load Elimination

1: for i = 1 to n do
2: A[i+ 1] = e1
3: A[i] = A[i] + e2
4: end for

1: A t initi = A[1]
2: for j = 1 to n do
3: A ti = φ(A ti+1,A t initi)
4: A ti+1 = e1
5: A[i+ 1] = A ti+1

6: A ti = A ti + e2
7: A[i] = A ti
8: end for

(c) Extended Array SSA (d) After Store Elimination

1: A0 = ...
2: A t initi = A1[1]
3: A2 = uφ(A1, A0)
4: for j = 1 to n do
5: A3 = hφ(A2, A7)
6: A ti = φ(A ti+1,A t initi)
7: A ti+1 = e1
8: A4[i+ 1] = A ti+1

9: A5 = dφ(A4, A3)
10: A ti = A ti + e2
11: A6[i] = A ti
12: A7 = dφ(A6, A5)
13: end for

1: A t initi = A[1]
2: for j = 1 to n do
3: A ti = φ(A ti+1,A t initi)
4: A ti+1 = e1
5: A ti = A ti + e2
6: A[i] = A ti
7: end for
8: A ti = A ti+1

9: A[i+ 1] = e1
10: A ti = A ti + e2
11: A[i] = A ti

Fig. 12. Store Elimination Example

7 Dead Store Elimination

Elimination of loads can increase the number of dead stores inside the loop. For
example, consider the loop in Figure 12(a). The store of A[i+1] in line 2 is used
by the load of A[i] in line 3. Assuming n > 0, Figure 12(b) shows the same loop
after scalar replacement and elimination of redundant loads. The store of A[i+1]
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SSA function Lattice Operation

si : Ar = uφ(Aq, Ap) Lu(Ap, si) = L(Ar)− {(v, d) |
∃ (w, 0) ∈ L(Ap) s.t. ¬DD(v, w)}

si : Ar = dφ(Aq, Ap) Lu(Ap, si) = update(L(Ar),L(Aq))

si : Ar = φ(Aq, Ap)
Lu(Aq, si) = L(Ar)
Lu(Ap, si) = L(Ar)

si : Ar = hφ(Aq, Ap)
Lu(Aq, si) = shift(L(Ar))
Lu(Ap, si) = shift(L(Ar))

Fig. 13. Index Propagation for Dead Store Elimination

Iteration 1 Iteration 2

L(A7) ⊥ {(i+1,1),(i+2,1)}
L(A5) {(i,0)} {(i,0),(i+1,1),(i+2,1)}
L(A3) {(i,0),(i+1,0)} {(i,0),(i+1,0),(i+2,1)}

Fig. 14. Dead Subscript Analysis

in line 5 for the first n− 1 iterations is now redundant since it gets overwritten
by the store to A[i] at line 7 in the next iteration with no uses in between.

Dead store elimination is run as a post pass to redundant load elimination
and it uses a backward flow analysis of array subscripts similar to very busy
expression analysis. The analysis computes set L(Ai) for every SSA function in
the program. Similar to available subscript analysis presented in Section 5, the
lattice for dead subscript analysis, L(A) is a subset of UA

ind×Z≥0. Note that there
could be multiple uses of the same SSA name. For instance, the SSA name A3

is an argument of the uφ function in line 12 and the φ function in line 19 in the
loop given in Figure 3(b). A backward data flow analysis will have to keep track
of lattice values for each of these values. To achieve this, we associate a lattice
element with each of the uses of the SSA variable represented as Lu(Ai, sj),
where sj is a statement in the program which uses the SSA variable Ai.

During the backward flow analysis, index sets are propagated from left to right
of φ functions. The lattice operations for the propagation of data flow informa-
tion are shown in Figure 13. The computation of L(Ai) from all the augmented
uses of Ai is given using the following equation.

L(Ai) =
⋂

sj is a φ use of Ai

L(Ai, sj)

The lattice values are initialized as follows:

L(Ai) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(x, 0)} Ai is a definition of the form Ai[x]

{(x, 0)} Ai is a use of the form Ai[x]

� Ai is defined outside the loop

⊥ Ai is a SSA function defined inside the loop
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The shift and update operations are defined as follows, where step1 is the
coefficient of the induction variable in i1, step2 is the coefficient of the induction
variable in i2 and so on.

shift〈(i1, d1), (i2, d2), . . .〉 = 〈(i1 + step1, d1 + 1), (i2 + step2, d2 + 1), . . .〉

update((i′, d′),L(Ap)) = {(i1, d1)|(i1, d1) ∈ L(Ap) and DS(i′, i1) = false} ∪ {(i′, d′)}

The result of the analysis is used to compute the set of dead stores:

DeadStores = { (Ai[x], d) | ∃ (y, d) ∈ L(Aj) and DS(x, y) = true and Ak = dφ(Ai, Aj)}

i.e., a store, Ai[x] is redundant with respect to subsequent defs if (y, d) ∈ L(Aj)
and DS(x, y) = true, where Ak = dφ(Ai, Aj) is the dφ function corresponding
to the use Ai[x]. d represents the number of iterations between the dead store
and the killing store.

Figure 12(c) shows the extended Array SSA form of the program in Fig-
ure 12(b). Figure 14 illustrates dead subscript analysis on this loop. The set of
dead stores for this loop is DeadStores = {(A4[i+ 1], 1)}.

Given the set DeadStores = {(S1, d1), ...(Sn, dn)}, the algorithm for dead store
elimination involves peeling the last k iterations of the loop, where k = max

i=1..n
di.

The dead stores could be eliminated from the original loop, but they must be
retained in the last k peeled iterations. The loop in Figure 12(b) after the elim-
ination of dead stores is given in Figure 12(d).

Similar to available subscript analysis, the worst case complexity of dead sub-
script analysis for a given loop is O(τ×k). The complexity of the transformation
is O(n), where n is the size of the loop body.

8 Extension to Objects and While Loops

In the previous sections, we introduced new scalar replacement analysis and
transformations based on extended Array SSA form that can be used to optimize
array accesses within and across loop iterations in counted loops. Past work has
shown that scalar replacement can also be performed more generally on object
fields in the presence of arbitrary control flow [10]. However, though the past
work in [10] used Array SSA form, it could not perform scalar replacement
across multiple iterations of a loop. In this section, we briefly illustrate how our
approach can also perform inter-iteration scalar replacement in programs with
while-loops containing accesses to object fields.

Figure 15(a) shows a simple example of a while loop in which the read of
object field p.x can be replaced by a scalar temporary carrying the value from
the previous iteration. This code assumes that FIRST and LAST refer to the
first node and last node in a linked list, and the result of scalar replacement is
shown in Figure 15(b). A value of τ = 1 suffices to propagate temp from the
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previous iteration to the current iteration, provided a prologue is generated that
is guarded by a zero-trip test as shown in Figure 15(b). It is worth noting that no
shape analysis is necessary for the scalar replacement performed in Figure 15(b).
If available, shape analysis [20] can be used as a pre-pass to further refine the
DS and DD information for objects in while loops.

(a) Original Loop (b) After Scalar Replacement

1: p := FIRST
2: while p 	= LAST do
3: ... = p.x;
4: ...
5: p = p.next;
6: p.x = ...
7: end while

1: p := FIRST
2: if p 	= LAST then
3: temp = p.x;
4: end if
5: while p 	= LAST do
6: ... = temp;
7: ...
8: p = p.next;
9: temp = ...
10: p.x = temp;
11: end while

Fig. 15. Scalar replacement example for object accesses in a while loop

9 Experimental Results

In this section, we describe the implementation of our Array SSA based scalar
replacement framework followed by an experimental evaluation of our scalar
replacement and dead store analysis algorithms.

9.1 Implementation

We have implemented our algorithms in LLVM compiler release 3.2. A high-level
view of the implementation is presented in Figure 16. To perform subscript anal-
ysis, we employed scalar evolution [17] as a pre-pass that computes closed form
expressions for all scalar integer variables in a given program. This is followed by
extended Array SSA construction, available subscript analysis, and redundant
load elimination. Since there are uφs associated with the loads that were elim-
inated, an Array SSA repair pass is required after load elimination to cleanup
the uφs and fix the arguments of control φs. The dead subscript analysis and
dead store elimination follows the Array SSA repair pass. Finally, the program
is translated out of Array SSA form.

9.2 Evaluation

Stencil computations offer opportunities for inter-iteration scalar replacement.
We evaluated our scalar replacement transformation on 7 stencil applications:
Jacobi 1-D 3-point, Jacobi 2-D 5-point, Jacobi 3-D 7-point, Jacobi 3-D 13-point,
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Fig. 16. High Level View of LLVM Implementation

Jacobi 3-D 19-point, Jacobi 3-D 27-point and Rician Denoising. For Jacobi 2-D
5-point example, we employed unroll-and-jam as a pre-pass transformation with
an unroll factor of 4 to increase scalar replacement opportunities. No unrolling
was performed on the remaining 3-D kernels, since they already contain suffi-
cient opportunities for scalar replacement. We used τ = 5, which is sufficient to
capture all the load elimination opportunities in the applications.

The experimental results were obtained on a 32-core 3.55 GHz IBM Power7
system with 256 GB main memory and running SUSE Linux. The focus of our
measurements was on obtaining dynamic counts of load operations1 and the
runtime improvement due to scalar replacement algorithms. When we report
timing information, we report the best wall-clock time from five runs. We used
the PAPI [15] interface to find the dynamic counts of load instructions executed
for each of the programs. We compiled the programs with two different set of
options described below.

– O3 : LLVM -O3 with basic alias analysis.
– O3SR : LLVM -O3 with basic alias analysis and scalar replacement

Table 1. Comparison of Load Instructions Executed and Runtimes

Benchmark O3 Loads O3SR Loads O3 Time (secs) O3SR Time (secs)

Jacobi 1-D 3-Point 5.58E+8 4.59E+8 .25 .25
Jacobi 2-D 5-Point 4.35E+8 4.15E+8 .43 .32
Jacobi 3-D 7-Point 1.41E+9 1.29E+9 1.66 .74
Jacobi 3-D 13-Point 1.89E+9 1.77E+9 2.73 1.32
Jacobi 3-D 19-Point 2.39E+9 1.78E+9 3.95 1.72
Jacobi 3-D 27-Point 2.88E+9 1.79E+9 5.45 3.16
Rician Denoising 2.71E+9 2.46E+9 4.17 3.53

Table 1 shows the dynamic counts of load instructions executed and the exe-
cution time for the programs without scalar replacement and with scalar replace-
ment. All the programs show a reduction in the number of loads when scalar

1 We only counted the load operations because these benchmarks do not offer oppor-
tunities for store elimination.
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Fig. 17. Speedup : O3SR with respect to O3

replacement is enabled. Figure 17 shows the speedup for each of the benchmarks
due to scalar replacement. All the programs, except Jacobi 1-D 3-Point displayed
speedup due to scalar replacement. The speedup due to scalar replacement ranges
from 1.18× to 2.29× for different benchmarks.

10 Related Work

Region Array SSA [19] is an extension of Array SSA form with explicit ag-
gregated array region information for array accesses. Each array definition is
summarized using a region representing the elements that it modifies across all
surrounding loop nests. This region information then forms an integral part of
normal φ operands. A region is represented using an uniform set of references
(USR) representation. Additionally, the region is augmented with predicates to
handle control flow. This representation is shown to be effective for constant
propagation and array privatization, but the aggregated region representation is
more complex than the subscript analysis presented in Section 5 and does not
have enough maximum distance information to help guide scalar replacement to
meet a certain register pressure. More importantly, since the region Array SSA
representation explicitly does not capture use information, it would be hard to
perform scalar replacement across iterations for array loads without any inter-
vening array store.

A large body of past work has focused on scalar replacement [11,6,7,3,14]
in the context of optimizing array references in scientific programs for better
register reuse. These algorithms are primarily based on complex data dependence
analysis and for loops with restricted or no control flow (e.g., [7] only handles
loops with forward conditional control flow). Conditional control flow is often
ignored when testing for data dependencies in parallelizing compilers. Moreover,
[7] won’t be able to promote values if dependence distances are not consistent.
More recent algorithms such as [3,14] use analyses based on partial redundancy
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elimination along with dependence analysis to perform load reuse analysis. Bodik
et al. [4] used PRE along with global value-numbering and symbolic information
to capture memory load equivalences.

For strongly typed programming languages, Fink, Knobe and Sarkar [10]
presented a unified framework to analyze memory load operations for both
array-element and object-field references. Their algorithm detects fully redun-
dant memory operations using an extended Array SSA form representation for
array-element memory operations and global value numbering technique to dis-
ambiguate the similarity of object references. Praun et al. [18] presented a PRE
based inter-procedural load elimination algorithm that takes into account Java’s
concurrency features and exceptions. All of these approaches do not perform
inter-iteration scalar replacement.

[5] employed runtime checking that ensures a value is available for strided
memory accesses using arrays and pointers. Their approach is applicable across
loop iterations, and also motivated the specialized hardware features such as
rotating registers, valid bits, and predicated registers in modern processors.

[21] extend the original scalar replacement algorithm of [7] to outer loops
and show better precision. Extensions for multiple induction variables for scalar
replacement are proposed in [2].

[9] presents a data flow analysis framework for array references which prop-
agates iteration distance (aka dependence distance) across loop iterations. That
is, instances of subscripted references are propagated throughout the loop from
points where they are generated until points are encountered that kill the in-
stances. This information is then applied to optimizations such as redundant load
elimination. Compared to their work, our available subscript analysis operates
on SSA form representation and propagates indices instead of just distances.

11 Conclusions

In this paper, we introduced novel simple and efficient analysis algorithms for
scalar replacement and dead store elimination that are built on Array SSA form,
an extension to scalar SSA form that captures control and data flow properties at
the level of array or pointer accesses. A core contribution of our algorithm is a sub-
script analysis that propagates array indices across loop iterations. Compared to
past work, this algorithm can handle control flowwithin and across loop iterations
and degrades gracefully in the presence of unanalyzable subscripts. We also intro-
duced code transformations that can use the output of our analysis algorithms
to perform the necessary scalar replacement transformations (including the in-
sertion of loop prologues and epilogues for loop-carried reuse). Our experimental
results show performance improvements of up to 2.29× relative to code generated
by LLVM at -O3 level. These results promise to make our analysis algorithms a
desirable starting point for scalar replacement implementations in modern SSA-
based compiler infrastructures such as LLVM, compared to the more complex al-
gorithms in past work based on non-SSA program representations.
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