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Abstract—In this paper we propose a new intermediate graph
representation for macro-dataflow programs, DFGR, which is
capable of offering a high-level view of applications for easy
programmability, while allowing the expression of complex ap-
plications using dataflow principles. DFGR makes it possible to
write applications in a manner that is oblivious of the underlying
parallel runtime, and can easily be targeted by both programming
systems and domain experts. In addition, DFGR can use further
optimizations in the form of graph transformations, enabling
the coupling of static and dynamic scheduling and efficient task
composition and assignment, for improved scalability and locality.
We show preliminary performance results for an implementation
of DFGR on a shared memory runtim system, offering speedups
of up to 11× on 12 cores, for complex graphs.

I. INTRODUCTION

It is now well understood that extreme-scale computing will
be faced by key software challenges, including those related to
concurrency, energy, and resilience [1]. These challenges are
prompting the exploration of new approaches to programming
and execution systems, and, specifically, re-visiting of the
dataflow model to find new ways to address the challenges
of extreme-scale software. In the early days of dataflow
computing, there was a belief that new programming languages
such as VAL [2], Sisal [3], and Id [4] were necessary to
obtain the benefits of dataflow execution. However, there is
now an increased realization that “macro-dataflow” execution
models [5] can be supported on standard multi-core proces-
sors by using data-driven runtime systems [6]–[8]. There are
many benefits that follow from macro-dataflow approaches,
including simplified programmability, increased asynchrony,
support for heterogeneous parallelism, and scalable approaches
to resilience. As a result, a wide variety of programming
programming systems have begun exploring the adoption of
dataflow principles, ranging from new programming models
such as Concurrent Collections (CnC) to the new task de-
pendency feature in OpenMP 4.0 [9]. Hence, there is now a
growing need for compiler and runtime components to support
macro-dataflow execution in these new programming systems.

In this paper, we introduce an intermediate graph repre-
sentation for macro-dataflow programs that we call DFGR,
and describe both its specification and implementation details.
Our goal with DFGR is to enable its use by a wide range of
programming systems. We describe how the DFGR model can
be used as an abstraction to map applications for extreme scale
systems, while remaining runtime independent. This allows
such applications to run anywhere the underlying data-driven
runtime can run, such as heterogeneous architectures including
GPUs and FPGAs or distributed-memory clusters and data

centers. DFGR can also help improving productivity by fo-
cusing the user on easily expressing task and data parallelism
in a dynamic single assignment memory model. This makes it
possible to perform numerous static and dynamic analyses and
transformations of the macro-dataflow graph. The contributions
of this paper are as follows.

• Learning from our experience with CnC [10] and the
modeling and mapping of medical imaging applications
in the CDSC project [11], we introduce DFGR, a dataflow
graph representation language to model full applications
and ease their deployment on homogeneous/heteroge-
neous parallel architectures.

• The DFGR representation can be easily implemented
using task-level parallelism. We demonstrate a fully auto-
matic translation system to Habanero-C, enabling DFGR
graphs to be automatically executed anywhere the HC
runtime operates, which includes shared-memory multi-
core, heterogeneous nodes containing GPUs and FPGAs,
as well as distributed-memory clusters.

• DFGR subsumes several dataflow models, and can serve
as a common representation for a wider range of dataflow
programming systems.

II. THE DFGR MODEL

A. Macro-Dataflow for High-Performance Computing

A major objective of the Center for Domain-Specific Com-
puting [11], [12] is to ease the development and deployment
of applications on heterogeneous devices. To achieve this
goal, we implement a two-level programming principle. Given
a complete application, for instance an end-to-end medical
imaging pipeline for CT scan reconstruction and analysis
[11], [13], the application is first decomposed into steps,
which can be executed atomically on a given device. A key
feature to enable high-performance on a variety of devices
is to allow the computation steps to be implemented in any
language of choice, such as C/C++, CUDA, HC, etc. These
step implementations form the low-level of the programming
model. At the high-level, these steps may be called numerous
times on different input data, and are seen as black boxes
reading some data elements and producing some other data
elements.

The coordination (control and data flow) between these
steps is described through a DataFlow Graph Representation
(DFGR). This graph is then automatically compiled into a par-
allel language, including the generation of all communications
needed between step instances and all the data- and control-
flow dependences between them, as described in the DFGR



file. We can exploit a dynamic and heterogeneous run-time
system for parallel step execution [13] that can be also ported
to distributed computing [6], [14], by compiling a DFGR graph
to a parallel language with good interoperability with other
low level languages, such as Habanero-C. In our framework,
a single DFGR file is used to model the full application data
and control flow between these atomic steps, irrespective of
the target platform used to execute the computation. Indeed, a
key motivation for DFGR and its associated execution model
is to decouple the task of expressing the parallelism, which
should belong to the domain experts and algorithm designers,
from the task of implementing the available parallelism on
a given hardware. DFGR is meant to ease the expression
of data flowing in and out of step instances by letting the
user focus exclusively on modeling the application data and
control characteristics without any concern about their actual
implementation. But for this approach to succeed, it is required
to ensure a set of properties of the language to allow for (1)
easy debugging and analysis of the graph structure, for instance
to detect races; (2) easy deployment on a variety of hard-
ware, ranging from heterogeneous multi-core/GPUs systems
to distributed computing on cluster; and (3) easy modeling of
complex applications, including at different parallelism grains.

To address these three problems, we present DFGR, a
macro-dataflow graph representation that builds on past work
on Intel Concurrent Collections [10] and CnC-HC projects
[13]. In a nutshell, DFGR is a macro-dataflow language that
enforces dynamic single assignment for data, thereby greatly
simplifying debugging and analysis. DFGR is fully and auto-
matically translatable to the parallel language chosen for the
concrete implementation of the model. To demonstrate this, we
implemented a compiler from DFGR to the Habanero-C (HC)
task-parallel language, which allows the graph to execute on
any hardware implementing the HC runtime or equivalent [6],
[10], [13]. Finally DFGR uses simple concepts such as unique
tags to model the relationship between dynamic instances of
steps and the particular data elements they access in a simple
text representation, thereby greatly facilitating the description
of the application’s parallelism and data flow.

B. Key Features of DFGR

DFGR is meant to serve as a general representation which
can rely on a parallel and distributed runtime for performance.
Previous models such as Kahn Process Networks (KPN) [15]
or the Synchronous Dataflow Model (SDF) [16] target stream-
ing applications, while Concurrent Collections (CnC) primarily
targets task parallelism. DFGR can express both the streaming
model and task parallelism and it can be further optimized for
both through analysis of the graph structure.

DFGR simplifies the CnC model by allowing dependencies
to be expressed between steps and items, and also directly
between steps and steps. It enhances CnC with a means of
expressing precisely what items are read and written by each
step. This is achieved through tag functions [13] (the tag
identifying an item read by a step is a function of the step’s tag)
and regions modeling sets of tags. It also preserves the con-
cept of affinities [13] between steps and underlying available
hardware, allowing automatic tuning of the application, when
multiple code variants for accelerators are made available.

A hierarchy of concepts for modeling sets of tags is
provided, from simple ranges (e.g., rectangles) to affine integer
tuple sets (e.g., polyhedra) to union of integer sets and finally
arbitrary sets. This clear hierarchy allows for static analysis and
optimization of the graph using compiler frameworks such as
the polyhedral model, when the tag sets and relations between
them are affine forms. These concepts are novel and key to
the DFGR model; they are further detailed in Section III-C.

While in the streaming model instances of (e.g, calls to)
steps run in sequence, in DFGR any instances of steps with no
dependence between them are viewed as parallel tasks. Steps in
the same collection may run on different cores or even different
devices. With tools capable of discovering part of the graph
topology statically, DFGR can make use of static scheduling,
while the remaining graph topology will be discovered at
runtime and it will rely on dynamic scheduling. CnC relies
entirely on dynamic scheduling while models such as KPN
and SDF expect the full graph topology to be known apriori.
DFGR natively encompasses both.

Steps in DFGR are functional (e.g., stateless), so data
accessed by steps is stored separately. All resources internal
to the step are cleared when the step instance finishes. Data
read by a step may come from any source, but any 〈tag,
token〉 pair is only written once. Graph items are Dynamic
Single Assignment (DSA) and are never collected, i.e. they are
persistent. Optimizations such as folding the data space when
an ordering is imposed or setting a fixed number of reads per
item (“get counts”) can allow items to be collected for better
storage management [17]. DFGR also permits arbitrary access
to data outside of the graph: such global data can be used
to create a state without using an item collection. However
using global data limits the outcome of graph analysis and
transformations, since this non-graph data is not represented
nor analyzed in the macro-dataflow graph.

The creation of steps is achieved directly by one step
spawning another step. This is different from CnC, where
control (tag) collections are used for spawning steps, but also
from streaming models where steps start as soon as data is
available without the ability to choose which steps should
run. Steps are allowed to make conditional Puts/Prescribes for
expressing general applications, while no switch and select
nodes are present in SDF. In DFGR, steps may also pass
parameters to the steps they spawn.

A step can explicitly request to wait on another step in
DFGR, while synchronization in previous models (including
CnC) required indirect coordination via items. Inter-step syn-
chronization in DFGR can be used to coordinate/schedule
accesses to data that is not modeled in the DFGR graph through
item collections. DFGR also allows non-determinism through
constructs such as “PutIfAbsent”, a method which only writes
an item if it was not previously written. Graph traversals can
use such constructs in order to establish the first visitor for a
node.

Finally, a DFGR graph is fully executable without having
to execute any of its actual step implementation. That is, the
entire dynamic parallelism and data flow can be uncovered us-
ing a simple interpretation of the DFGR program, allowing for
subsequent analysis and optimizations such as race detection
and storage optimization.



III. DFGR LANGUAGE SPECIFICATION

A. Core Features for Macro-Dataflow Modeling

DFGR is a graph representation that contains two main
components: steps, that represent pieces of computation; and
items, that represent pieces of data read and written by steps.
The user describes an application by writing a graph (in textual
form or using an API to create the graph) that captures the
relation between data items and steps. In order to model
explicitly all the dynamic instances of each step as well as
all items during the execution of the application modeled, both
steps and items are grouped into collections within which they
have unique identifiers called tags. In order to guarantee the
graph is deterministic and free of data races, all data in item
collections must follow the dynamic single assignment rule,
that is an item in a collection is never written more than once.

An item collection is a group of data items having the same
type. Each item in the collection can be uniquely identified by
its tag, thus an item collection is a set of (tag, value) pairs.
Items can be written to a collection by the environment and
also by other steps. Similarly, items can be read by steps and
by the environment once the graph execution has finished.
Item collections are declared in the textual representation using
brackets: [int* A] declares a collection of items which are
pointers to integers. Using a pass-by-value mechanism, any
type, including structures and arrays, can be used for items.

The human-friendly modeling of all data elements being
read and/or written by a step instance is achieved by relating
the tags of item collections with tags associated to step
instances. For instance [A : i] models tag i of collection
A. Then [A : i-1] -> (S : i) -> [A : i] models that
instance i of S will read element i-1 of collection A, and
produce element i. In DFGR there are multiple ways to
describe tags, as discussed in Sec. III-C. In its most general
form the user can write [A : foo(...)] to describe a tag
value, where foo is a call to some pure function possibly
requiring run-time evaluation to compute its value.

A step collection is a group of instances of the same
step. The unique identifier (tag) of a step instance can carry
semantics used by the step implementation itself, for instance
the tag can behave like a surrounding loop iterator. Steps
can be started by the environment which is in charge of
initializing and starting the graph, and also by other steps.
Depending on the model’s implementation, it can adhere to
the strict preconditions model, where steps will not execute
until all its input data is made available; steps can execute
eagerly and block or rollback when data is not available; or
have a flexible approach through the flexible preconditions
model [18]. Steps are written using parentheses: (S). DFGR
uses arrows to express reads and writes: [A]->(S) and double
colon to express the creation of new steps: (S1)::(S2). When
using tags, the notation (S : i) models instance i of step S,
and env::(S : {1..42}) models that the environment env
will prescribe at start 42 instances of S, that is i will range
from 1 to 42. The modeling of data and control dependences
between step instances is achieved through the modeling of the
data read/written by a step instance, and also using an explicit
step-to-step (e.g., point-to-point) synchronization construct.
For instance (S1 : i) -> (S2 : i) models that instance i
of step S2 will not start until instance i of step S1 completed.

B. Example: Smith-Waterman in DFGR

In this section we take the Smith-Waterman sequence align-
ment algorithm and show the steps needed to write an appli-
cation in DFGR. The DFGR representation can originate from
hand-written user code, from tools analyzing dependences in
sequential programs or from other graph representations.

Writing a DFGR representation implies that the user must
reason about the computation that exists within the graph, the
data read and written and how this information flows from one
step to another. In Figure 1, we give a visual representation
of the computation performed on a matrix in the Smith-
Waterman algorithm. We identify 4 kind of steps: a single step
(S) computing the top-left matrix corner, and a set of steps
computing the top row (T), left column (L) and the center
(C) of the matrix. The arrows mark the flow of data, e.g. the
information from step (S) is read by three other steps (T),(L)
and (C), while each step (T) provides input to another instance
of step (T) and 2 instances of step (C). In this example it
becomes clear the need to group steps into collections and
use unique identifiers to differentiate between instances of the
same step. Let us assume that we are using a NH × NW
matrix. Then, there are (NH-1) × (NW-1) center steps, where
each can be identified by a unique tag (i,j), with 1≤i≤NH and
1≤j≤NW. From Figure 1 we can also infer data dependences,
e.g., all center steps read 3 items and write a single item.
Using the tuple (i,j) as the unique tag identifer, we can say
that each step (C:i,j) reads items [A:i-1,j-1], [A:i-1,j], [A:i,j-1]
and writes [A:i,j].

Fig. 1: Smith-Waterman: The computation steps are grouped
in a matrix structure based on their unique identifiers (i,j) and
the items they write [A:i,j]. Arrows show data dependences for
each step.

Alternatively, a graph representation can originate from
automatic analysis of a sequential code such as in Listing 1.
In this code snippet we abstracted the actual computation
performed by each step with a function call. Note that from
this code we can also infer the dependences specified before, in
particular what items each step reads and writes and a unique
identifier for each step. As it is required to use the dynamic
single assignment form for DFGR, if the input code is not in
DSA form already a promotion to DSA must be performed
during the translation to DFGR.

The DFGR file for Smith-Waterman in shown Listing 2.
The first line of code declares an item collection, where each
item is of type int. The next four lines of code specify for each
of the 4 steps what items are read and written, using the unique
tags for both steps and items. The final four lines specify what
the environment needs to produce for the graph to start, and
what it needs to emit after completion of the graph (output
data). The environment will start all computation steps and it



Listing 1: Sequential Smith-Waterman code.

A[0][0] = single_corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) {

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

}

will read one item resulting from the computation (the bottom
right corner, the sequence alignment cost in Smith-Waterman).

Listing 2: DFGR for Smith-Waterman.

[int A];
//Steps’ I/O relations

(single_corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
//Steps started by the environment.

env::(single_corner:0,0);
env::(top:0,{1 .. NW+1});
env::(left:{1..NH+1},0);
env::(center:{1..NH+1},{1..NW+1});
[A:NH,NW] -> env;

C. In-Depth: DFGR Tags

1) Tag Functions Explained: We say that a I/O and
prescription rules are composed of two parts connected by
the − > and :: operators respectively. One side is the step
driver, declared between parentheses and identified by a multi-
dimensional tag, abstracted by user-chosen variable names.
The other side (left or right for I/O relations and right for
prescriptions) is a list of items or steps each identified by a
list of functions, where each such function is a function of the
driver step’s tag components. The diagram in Figure 2 gives
an example of a step prescription and aims to clarify what are
tags, tag components and tag functions.

s1’s tag = list of tag components
/’\ s2’s tag = list of tag functions
| /’\
| |

___|___ ______|_______
| | | |

(s1 : i1, ..) :: (s2 : f1(i1, ..), ..);
| |_________|
| |
| \,/
| f1 tag function = function of one
| or more of the tag components

\,/ describing s1’s tag
i1 tag component=user-chosen variable name

Fig. 2: Step tags, tag components and tag functions explained

2) A Hierarchy of Concepts for Tag Sets: A key feature of
DFGR is to attempt to reconcile static and dynamic macro-
dataflow modeling, especially by allowing the explicit and
unique naming of each step instance and each item in a data
collection. To achieve this goal we propose a hierarchy of
concepts that can be used to represent sets of tags, ranging
from the simplest form of integer ranges to the most complex
form of arbitrary sets. For instance the example in Listing 2
uses ranges to describe the step instances prescribed by the
environment, i.e., {1..NW+1}. But in the general case, more
complicated shapes can be required to properly model the
set of steps. On the other hand, allowing for abitrary sets
without any property allow to model the general case, but may
dramatically limit the static analysis that can be performed.

The motivation for introducing several different concepts in
a structured way relates to the different kinds of static analysis
frameworks that could be used at the graph level. Limiting
to particular constructs to model tag sets will automatically
enable or disable certain static analysis frameworks. Focusing
only on using integer tuples for the tags, for good expressive-
ness we need to capture the sets of tags to be used in the
representation, be it for describing a set of step instances, a
set of prescribed steps, or a set of data being read/written by
a step. We propose the following hierarchy for these sets: (1)
ranges; (2) simple polyhedron; (3) union of Z-polyhedra; (4)
union of arbitrary sets.

In a nutshell, ranges will model rectangles and are well
suited for simple, regular computations. Polyhedra, which
are described using affine inequalities, enable powerful static
analysis and transformation of the graph based on the affine
framework [19], [20]. Unions of Z-polyhedra are a general-
ization of polyhedra, allowing for more complex geometric
shapes to be modeled by using union of convex sets, and
regular strides in the set are supported using affine lattices [21].
Modern polyhedral compilation frameworks fully support the
complete analysis of programs described using such polyhedra
[22]–[24]. Finally, arbitrary sets are sets not belonging to
any of the previous category, typically used when the set
cannot be described using strides and affine inequalities; or
when the set is described using functions whose result is not
statically known, for example foo(i,j) where foo is seen as
an uninterpreted function at the graph level. In our hierarchy,
the less expressive the set type is, the simpler it is to implement
static analyses and code generation to a parallel language on
such sets.

a) Ranges and Simple Polyhedra: The role of tag sets is
analoguous to the role of iteration spaces for step prescription,
and data sets for items. Tag sets can be used to express complex
I/O and prescription dependences in tag functions.

In the code snippet below we use a 1-dimensional range
to define that step s1 may write i1 items into item1 with tags
ranging from 0 to i1.

(s1 : i1) −> [item1 : {0 .. i1}];

A key benefit of ranges is that they are very simple to
analyze and translate. For instance one can scan a set described
by a range using a simple for loop, using the bounds of the
range as the loop bounds. Multidimensional ranges are simply
scanned using nested for loops.



The same set can also be defined using a region, the generic
name in DFGR for tag sets which are not ranges. Polyhedra,
union of Z-polyhedra and arbitrary sets are all considered
regions in DFGR. A basic syntactic analysis of the region
expression is enough to determine which actual type of set is
being implemented. Here is an example of defining and using
a region reg1:

<reg1(ub) : r1> { 0 <= r1, r1 <= ub };
(s1 : i1) −> [item1 : r1; reg1(i1)];

The first line defines a region named reg1, which is a 1-
dimensional set. A parameter (that is, an unknown constant) is
used in the region definition: ub. r1 is the variable associated
to this set, that is, r1 will take all values defined by the set
reg1. The region is defined here using a conjunction of affine
inequalities each separated by , so it is a basic polyhedron.
The second line is an I/O relation which uses the region reg1.
It says that a step instance – identified by i1 – from step
collection s1, will write all items with tag r1 ∈ reg1. We can
combine tag functions with regions, such as in:

(s1 : i1) −> [item1 : f1(r1); reg1(i1)];

which models that instance i1 of s1 may write into item
collection item1, for all r1 ∈ reg1, any or all values with tags
given by the tag function f 1(r1).

Ranges may be used to describe unnamed, rectangular,
contiguous and multidimensional iteration spaces.

(s1:i,j)->[item1:{i-1..i+1},{i+j..i*j+1}];

In the example above, there are two ranges, one for each of the
tag components of the item collection, we also say it defines
a 2-dimensional range. First, note that ranges are unnnamed.
Secondly, the sets defined by ranges are rectangular, because
without names each dimension is independent of the others (i.e.
the second range cannot refer to an particular item in the first
range). As an analogy with f or loops, ranges cannot express
a triangular loop nest. Thirdly, the ranges can only be used
at the outer level when specifying a tag function. To be more
precise, it is correct to say ”{i+1..i+5}” but incorrect to say
”i+{1..5}”. In this example the two notations are equivalent,
because addition (and subtraction) is distributive with a range.
However multiplication is not distributive, nor is division. As
such, there is no means of specifying that a step writes for
example items i∗2, i∗3, i∗4...i∗N using a range, but we can
easily write this with a region. We say thus that a range is a
contiguous set of integer points, whereas a region need not be.

b) More Region Constructs: In practice, ranges and
simple polyhedra are often enough to express the tag sets
needed to model an application. They also come with the ben-
efit of easy compilation to a loop-based language, as scanning
such sets is straightforward for ranges (see above) but also
for simple polyhedra after normalizing the inequalities in row-
echelon form. On the other hand, more complicated patterns
may need to be expressed. In our taxonomy for tag sets, we
purpotedly isolated union of Z-polyhedra from arbitrary sets
because, similarly to ranges and simple polyhedra, there exists
readily available tools to generate code scanning those sets
at compile-time. For instance CLooG [23] and ISL [24] both
generate automatically code scanning those sets using only for
loops and if conditionals, making the translation of these sets
to the target parallel language straightforward. We remark that

numerous static analysis (dataflow analysis, scheduling, etc.)
are also available for programs described using only this type
of set.

In its general form, a region is a union (e.g., disjunction) of
conjunction of inequalities. Its inequalities may be a function
of parameters and uninterpreted functions. For instance the
region below:

<reg2(i,j):r1,r2>{i-1<=r1,r1<=i+1,i+j<=r2,r2<=i*j+1};

is a conjunction of four inequalities, i and j are parameters,
and r1 and r2 are the two dimensions of this set, e.g., points
in this set are tuples (r1,r2). As i and j are parameters, this
set is actually a simple polyhedron. The region below:

<reg3(i,j):x,y>{i<=x,x<=j,y>=0,y<=fc(x,j)},{x=1,y=3};

represents a union of sets (separated by ,), where in the
first part an uninterpreted function fc(x,j) is used. Without
further information on this function, this set cannot be analyzed
statically using polyhedral frameworks, thereby limiting the
analysis that can be performed on the whole graph. On the
other hand, it allows the modeling of arbitrary sets, but at the
expense of a possibly costly run-time scanning code as the
function needs to be evaluated for each x value.

IV. IMPLEMENTATION DETAILS

A. Language tool chain

The high-level DFGR model is designed to be language
independent, and the concrete implementations of the model
will make the language choice. We created an implementation
of DFGR that relies on a parallel C programming model, in
order to achieve both performance and interoperability with
languages dedicated to specialized hardware.

Figure 3 presents the implementation flow for an applica-
tion written in DFGR.

DFGR

User 
kernels

Auto-
generated

C, HC files 
and MakefileDFGR Translator

hcc: HC compiler

Optional sources
e.g: libraries, 

hand-written HC, 
CUDA code, etc.

gcc

Object files
(*.o)

DFGR 
Runtime

gcc

Executable

Habanero-C
(HC) Library

Tools for graph 
transformations

CnC and 
other data-flow 
representations

User View

Underlying tools

Fig. 3: DFGR Implementation Flow

The steps for creating an application using DFGR are the
following. First, an application needs to be written in the
DFGR format, i.e. the algorithms needs to be decomposed
into steps, along with the producer-consumer relationships
between them. This textual graph can be either written by the



user, or it can be generated by tools analyzing and translating
from another programming language, or from other dataflow
modeling using a similar graph representation. An example
of the latter is generating DFGR from CnC, but note that
this translation cannot use all the features in DFGR, as CnC’s
specification is more restrictive.

Further, we provide a translator that generates a series of
“glue-code” files to enable transparent parallelism for the user,
using the inter-step dependences provided in the graph file. The
translator also creates code stubs for each of the computation
steps, and offers guidelines for creating the user code, i.e.,
for writing items and spawning new steps. The translator also
provides a “full-auto” mode, which assumes all items declared
by a step in a graph will be written and all steps prescribed
and creates fully compilable steps instead of the step stubs.
The user can then simply add his own file containing the
implementation of the computation steps, without ever seeing
any of the API needed by DFGR or its translation to HC.

Once the user has provided the code for the computation
steps, they can use the makefile generated by the translator to
build the application. The build system uses the Habanero C
compiler (see Section IV-C) and the gcc compiler to generate
an executable file. If additional libraries are required, they can
be easily added in the provided makefile.

B. Implementing item collections

For efficiency, we implement item collections in DFGR
using a hash-table for each collection, an approach similar to
previous implementations of the CnC model. Indexing in the
hash-table is done via the key which uniquely identifies each
item in the collection.

As items must adhere to the DSA rule, we have created
safety nets to warn users an item with the same tag is written
multiple times. We do however allow items to be cleared from
a collection once they are no longer used. This information
can provided by the user when writing to a collection, by
specifying a “get-count”, which is a number equal to the
number of times the item will be read. If this information
is not specified, the item will remain in the collection for the
duration of the graph execution.

C. Implementing step collections

Steps are asynchronous pieces of computation, that we im-
plement using a task-parallel programming model: Habanero-
C [25]. A collection of steps is a theoretical construct, which
refers to the fact that these computations perform the same
function, and their only side effect are the items they write
and the new steps they transitively create.

The Habanero-C (HC) language is a C-based task-parallel
programming language developed at Rice University. In this
section, we summarize key properties of HC and the Habanero
model as described in [25]–[27]. The two main features of
HC that are relevant to this paper are the async and finish
constructs, which define lightweight dynamic task creation and
termination and were originally defined in X10 [28].

A new child task is created using statement “async 〈stmt〉”.
This will run 〈stmt〉 asynchronously (i.e. before, after, or
in parallel) with the remainder of the parent task. Figure 4

provides a diagram in which the parent task, T0, uses an async
construct to create a child task T1. Thus, STMT1 in task T1 can
potentially execute in parallel with STMT2 in task T0.

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Fig. 4: An example code schema with async and finish [27]

async is a powerful primitive because it can be used to
enable any statement to execute as a parallel task, including
statement blocks, for-loop iterations, and function calls. In this
work we use the async statement to create dynamic instances
of DFGR steps.

finish is a generalized join operation. The statement
“finish 〈stmt〉” causes the parent task to execute 〈stmt〉 and
then wait until all transitively spawned tasks using the async
primitive have completed.

Each dynamic instance TA of an async task has a unique
Immedia Enclosing Finish (IEF) instance F of a finish
statement during program execution, where F is the innermost
finish containing TA [29]. There is an implicit finish scope
surrounding the body of main(), so program execution will
only end after all async tasks have completed.

For example, the finish statement in Figure 4 is used by
task T0 to ensure that child task T1 has completed executing
STMT1 before T0 executes STMT3. If T1 created a child async
task, T2 (a “grandchild” of T0), T0 will wait for both T1 and T2
to complete in the finish scope before executing STMT3 [13].
We only use one level of finish when executing a DFGR
program because we include additional data-driven execution
constraints on async tasks that control when async tasks
become ready for execution.

D. DFGR runtime

The implementation of the DFGR model we present in
this paper relies on a runtime built on top of the Habanero-
C programming language. It uses the async construct to
create asynchronous running steps and the finish construct to
wait for the termination of the graph. The DFGR runtime
implementation involves ensuring that steps are only started
when all the data they need for execution is available. This
is achieved by testing the satisfiability of all dependences
before each steps’s execution and queuing up the steps on the
missing data. In the DFGR runtime, the creator C of a data
item takes the responsibility of checking for waiting steps. If
the current data is the last one in the waiter’s dependency
list, C sends the new steps to the scheduler for execution.
Alternatively, it will reenqueue the step on the next missing
piece of data it needs. Note that since DFGR is designed as a
high-level representation of data-flow application, its concrete
implementation can vary. The implementation we presenting
this paper can be used as a reference for future works.



V. PRELIMINARY RESULTS

Our results were obtained on a 12 core Intel Xeon CPU
X5660 @ 2.80GHz. The results presented here are an average
of 5 runs for tiled implementations of a series of benchmarks
(the implementation is C based with a standard deviation below
5%). We remark we did not perform any tile size tuning or any
optimization of the scheduling/placement of step instances in
these preliminary experiments. These result are but a guideline,
showing reasonable performance on the CPU. The underlying
runtime relies on the work presented in [13] and, as such,
exhibits similar performance with it. The scope of this paper
is an overview of DFGR, so we do not show results on
heterogeneous architectures; the current implementation has
this capability, using similar constructs presented in [13].

• Smith-Waterman is an algorithm from the biology domain,
which performs sequence alignment between two strings
or nucleotide or protein sequences. We run the alignment
algorithm for 2 strings of size 50000 each, with a tile size
of 400 in each dimension.

• Black-Scholes is a financial application that computes
stock values. We use an input size of 1,500,000 and
granularity 128.

• Cholesky Factorization is a linear algebra benchmark that
decomposes a symmetric positive definite matrix into a
lower triangular matrix and its transpose. The input matrix
size is 3000 × 3000 and the tile size is 150×150.

• Matrix Inverse creates the inverse of a symmetric positive
definite matrix using an algorithm which decomposes
the input matrix into tiles and computes partial matrices
before obtaining the inverse. The input matrix size is 4096
× 4096 and the tile size is 64 × 64.

• Denoise is an algorithm for processing 3D images in order
to remove noise. We use an input of 256 × 256 × 256
and a tile size of 32 × 32 × 32.

For all benchmarks we use the strict preconditions model,
for performance [18], which models applications where all step
dependences are known in advance – outlined in a DFGR
format in our benchmarks – and steps only start where all
inputs are available. We see in Figure 5 that all benchmarks
described above have already good strong scaling results, even
without tuning the tile sizes or applying high-performance op-
timizations to the computation kernels. In addition, the DFGR
model offers great user productivity due to the automatic
generation of the code glueing together a parallel application,
relying on the user only to describe the algorithm in DFGR
and to provide the computation kernels.

VI. RELATED WORK

DFGR is a data-flow model and by definition exposes an
application’s available parallelism. Traditional programming
models express sequential computations, or provide complex
primitive for creating parallel programs. This either limits the
user’s capability of expressing arbitrary parallel computations
or requires complex knowledge and understanding or parallel
models. In contrast, the data-flow model enables the expression
of intrinsically parallel applications through the decomposition
of applications into tasks and their relations.

DFGR has its roots in Intel’s Concurrent Collections (CnC)
[10], [30], a macro-dataflow models which takes a similar

Fig. 5: Scalability results for 5 benchmarks implemented using
DFGR

approach providing a separation of concerns between a domain
expert, who can provide an accurate problem specification at
a high level, and a tuning expert, who can tune the individual
components of an application for better performance. In the
original CnC implementation however there was no means of
knowing which item from a particular item collection a step
should read, so such information needed to be given by the
user inside the step code. The CnC model was extended [13]
to enable accurate definition of dependences at a high level,
in a textual graph specification, removing the need to make a
user familiar with a particular API. DFGR takes the idea of a
high-level data-flow model one step further, by simplifying the
way of specifying step-item and step-step relations one the one
hand, and offering more complex means of describing complex
applications on the other. DFGR is also designed to be a
possible standard for an intermediate representation of parallel
programs in a macro-dataflow setup. Another motivation for
this approach is to reuse the optimizations performed at the
graph level, such as granularity adjustments, graph unrolling
and static mapping of partial graphs onto low level architec-
tures.

In this work we use the Habanero-C language to express
parallelism. Other data-flow models take a similar approach
of using either a threading library, such as pthreads used in
TFlux [31], or a task library, such as TBB used in Intel’s
CnC, or a parallel language such as Cilk used in Nabbit [32].
As with Cilk, Habanero-C relies on a work-stealing scheduler
[33], which, when used with arbitrary task graphs can overload
the machine. DFGR aims to ease addressing this problem by
separating the application description from its concrete imple-
mentation, for instance by enabling graph transformations to
coarsen the granularity of parallelism.

One of the most commonly used parallel language is



OpenMP. In this model it was shown that having synchro-
nizations using barrier is possibly very limiting for expressing
applications. Recent work [34] has extended the OpenMP
model to enable do-across parallelism for point-to-point syn-
chronization, in order to make synchronization more efficient
and enable data-locality.

Legion [35] is another language which aims to ease the
programmer’s use by taking as input a sequential program
and automatically determining the dependences by creating
a complete set of read-write statements for all data and
enabling paralellism when no dependences are found. This
model however requires an initial sequential specification of
a program, while DFGR does not. In addition DFGR could
benefit from the locality optimizations performed in Legion.

VII. CONCLUSIONS

In this paper we proposed DFGR, a graph representation
for macro-dataflow programs offering high programmability
for exascale computing. We outlined the language features
that enable DFGR to model complex applications and the
potential for graph analysis for DFGR applications. We have
shown preliminary results of an implementation of the DFGR
model, which offers good scalability for complex graphs.
Our ongoing work involves taking the concepts presented in
this paper and performing graph transformations to coarsen
task granularity. Together with future transformations on the
graph representation, these can lead to achieving performance,
locality and ease of mapping onto heterogeneous hardware.
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