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Abstract—Driven by the increasing diversity of current
and future HPC hardware and software platforms, the HPC
community has seen a dramatic increase in research and
development efforts into the composability of discrete software
systems. While modularity is often desirable from a software
engineering, quality assurance, and maintainability perspective,
the barriers between software components often hide optimiza-
tion opportunities. Recent examples of work in composable
HPC software include GPU-Aware MPI, OpenMP’s target
directive, Lithe, HCMPI, and MVAPICH’s unified communi-
cation runtime. These projects all deal with breaking down
the walls between software or hardware components in order
to achieve performance, programmability, and/or portability
gains. However, they also generally focus on composing only
specific types of HPC software and have limited extensability.

In this paper, we present work on using a pluggable API
framework on top of a ‘“generalized work-stealing” runtime
to achieve composability of communication, accelerator, and
other HPC libraries. We motivate this work by the increasing
heterogeneity of HPC hardware, software, and applications,
and note that as heterogeneity increases many discrete software
frameworks will need to cooperate within a single process.
Our framework, called HiPER (a Highly Pluggable, Extensible,
and Re-configurable scheduling framework for HPC) enables
exactly this cooperation.

We demonstrate the programmability improvements enabled
by the HiPER framework through the use of novel APIs which
reduce programmer burden. We also present performance stud-
ies that demonstrate that through unified and asynchronous
scheduling of composed software systems we can achieve
performance improvements over hand-optimized benchmarks.
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I. INTRODUCTION & MOTIVATION

The number and diversity of software libraries and hard-
ware components used by scientific applications on high-
performance hardware has steadily increased in the last
decade. At the same time, the scale of high-performance
computing (HPC) platforms has steadily increased both in
terms of the number of processing cores and shared-memory
nodes, making it more important for programming systems
to hide latencies using asynchronous APISs.

However, the use of multiple software modules and the
ability to hide inter- or intra-node latencies are directly in
conflict. Software modules are by definition discrete and
separate, with no knowledge of the other software tenants in a
multi-tenant software system. As a result, they generally offer
little or no support for expressing the connection between
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Figure 1. Depiction of the abstract platform motivating this work.

operations in two separate modules. This generally leads to
the need for overly coarse synchronization when algorithmic
dependencies cross module boundaries, inhibiting latency-
hiding techniques that generally rely on exposing the maximal
amount of parallelism in an application.

In this paper, we explore the design and implementation of
a highly extensible HPC runtime called HiPER (Highly Plug-
gable, Extensible, and Re-configurable scheduling framework
for HPC). HiPER unifies the representation of computation,
communication, and other work as tasks in a task-parallel
runtime system. It enables the unified scheduling of a full
application workload on a single runtime, supports third-party
extensions to the type of work it schedules, and emphasizes
future-based APIs for maximal asynchrony.

A. Our Abstract Platform Model of Future HPC Systems

To motivate the design presented in Section II we briefly
present an abstract platform model representative of future
HPC systems. Figure 1 summarizes this model.

The computational backbone of future HPC systems will
be a pool of bandwidth-optimized, lightweight, programmable
cores [1]. This pool of lightweight cores in each node will be
paired with zero or more latency-optimized cores. While these
latency-optimized cores may be used for some computational
kernels, their primary use will be the orchestration of work on
the lightweight cores, communication over the network, I/O to
local storage (e.g. for checkpointing), and other management
functions.

The management cores and computational cores will
most likely share and have direct access to high-bandwidth,
high-latency memory. While this high-bandwidth memory



may be accessed through load and store instructions, the
use of specialized data transfer APIs and on-chip, lower-
latency memory will enable locality optimizations for both
management and computational cores.

A high-performance, non-uniform interconnect will con-
nect shared-memory nodes, similar to existing systems. This
interconnect may be accessed through multiple software
libraries in a single application (e.g. MPI, UPC++ [2],
OpenSHMEM [3]) depending on how library abstractions fit
application communication patterns.

Each shared-memory node will include at a minimum
some high-bandwidth (likely Flash-based) local storage and
also have access to a higher-latency, lower-bandwidth shared
filesystem. In addition, future systems may include non-
volatile memory (NVM) for use as a persistent storage
for checkpoint-restart, as a Burst Buffer [4], or in other
configurations. Again, a custom library will be required for
direct access to NVM.

While the number of total cores in these future systems
will almost certainly increase, the number of heavyweight,
management cores may actually decrease relative to today’s
homogeneous x86-based systems. For example, the Sunway
TaihuLight [5] has only eight management cores per node.
Hence, in the future it will be even more crucial to efficiently
utilize these management cores using techniques like the ones
presented in this paper.

B. Contributions

Motivated by the abstract platform model described in
Section I-A, the diversification in software systems that
will be necessary to program future implementations of
this platform model, and the conflict between software
modularization and cross-module optimization, we introduce
the HiPER system in this paper and make the following
contributions:

1) A “generalized work-stealing” scheduler and its use
in unified scheduling of heterogeneous workloads on
heterogeneous systems.

2) A pluggable and extensible task-based programming
model which enables the composition of multiple
computational and communication libraries on top of
a generalized work-stealing runtime.

3) A description of an implementation of the above
two concepts on existing HPC systems, including the
implementation of pluggable modules for the CUDA,
MPI, OpenSHMEM, and UPC++ HPC libraries.

4) An evaluation of the performance and programmability
of the ISx [6], HPGMG [7], UTS [8], Graph500 [9],
and a geophysical application using our HiPER imple-
mentation.

The source code for HIPER and all benchmarks used in

this paper are also made available open source at [10].

The remainder of this paper is structured as follows.

Section II presents the design and implementation of the

Figure 2. An example of the HiPER Platform Model.

HiPER system. Section III evaluates the programmability and
performance of our implementation across a range of HPC
systems. Section IV summarizes related research. Finally,
Section V discusses how HiPER might evolve in the future
in response to changes in the HPC landscape and Section VI
presents our conclusions from this work.

II. DESIGN & IMPLEMENTATION

At a high level, the HiPER system consists of three
components: 1) a platform model, 2) a generalized work-
stealing, multi-threaded runtime, and 3) pluggable, third-party
software modules.

The HiPER Platform Model offers an abstraction of the
heterogeneous hardware resources across which the workload
of an application will be distributed. The Generalized Work-
Stealing Runtime manages load-balancing and execution of
user-created tasks placed at different locations in the Platform
Model. The Pluggable Software Modules sit on top of the
runtime and expose familiar APIs to the user (e.g. MPI,
OpenSHMEM) while placing tasks in the HiPER Platform
Model to be executed by the work-stealing runtime.

A. HiPER Platform Model

The HiPER Platform Model consists of an undirected,
unweighted graph. Nodes within the graph logically represent
hardware components that software libraries may utilize, and
are referred to as “places” [11]. Figure 2 depicts an example
HiPER Platform Model.

Edges between places in the platform graph logically
represent direct accessibility between hardware components.
For example, a direct edge between system memory and
GPU device memory indicates that data in system memory is
directly transferrable to that GPU’s device memory. There is
no strict requirement that there be a one-to-one mapping of
places or edges in the platform model to physical hardware or
connections. However, some similarities are likely desirable
for performance fidelity.

The HiPER Platform Model is implemented as an in-
memory graph structure. It is loaded from a JSON-formatted
file at HiPER runtime initialization. HIPER comes with utili-
ties for automatically generating JSON platform configuration
files using the HWloc library [12], but users are also free to
edit these configurations.



B. Generalized Work-Stealing Runtime

Work-stealing is a common technique for automatic load
balancing across homogeneous cores [13]. At a high level,
work-stealing balances work across a persistent thread pool by
having idle threads “steal” tasks from work pools belonging
to neighboring threads.

The “Generalized” in “Generalized Work-Stealing” refers
to the ability to perform work-stealing load balancing for
more than homogeneous computational tasks. The HiPER
Generalized Work-Stealing runtime depends upon the Plat-
form Model and consists of four components: a set of
persistent worker threads, task deques of eligible tasks at
each place in the platform model graph, a pop and steal path
for each thread which traverses some subset of the places
in the platform model, and an API for enqueueing tasks to
the task deques in the platform model. This work does not
make any novel contributions in the area of load-balancing
policies.

1) Persistent Thread Pool: Like most work-stealing run-
times, our generalized work-stealing runtime sits on persistent
set of worker threads on which all tasks are executed. These
worker threads reside on the management cores of an HPC
system. The number of worker threads to create is defined
in the JSON file used to initialize the platform model, and
generally equals the number of management cores.

Tasks are defined as suspendable single-threaded streams
of execution, and may synchronize on other tasks or create
new tasks.

As in Realm [14], HPX [15], and QThreads [16], the
HiPER runtime threads use runtime-managed call stacks
to enable task suspension. When a HiPER task blocks on
a synchronization operation, HiPER will suspend that task
without blocking a CPU core on it by swapping its call stack
off of the current thread, wrapping its continuation in a task,
and making the execution of that task predicated on the
satisfaction of the appropriate synchronization event. Call
stack suspension relies on the Boost Contexts library [17].

2) Per-Place Task Deques: Each place in the platform
model includes N task deques, where N is the number of
threads in the persistent thread pool described above. The
ith deque in a place contains only eligible tasks that are
ready to begin executing and which were spawned by the
ith worker thread. Hence, given a place and a thread looking
for work to do it is straightforward to differentiate between
tasks created by that same thread and tasks created by other
threads. Executing a task created by the same thread likely
encourages locality, while executing a task created by other
threads encourages load balancing.

3) Per-Thread Pop and Steal Paths: Each worker thread
has one “pop path” and one “steal path”. Each of these paths
is an ordered list of places in the platform model. A path
defines the sequence of places a runtime thread will traverse
when searching for a task to execute. When traversing a pop
path, a runtime thread will only check for work that it created.
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An example of a pop or steal path through the HiPER Platform

A steal path is similar, but runtime threads traversing a steal
path will only look for work created by other runtime threads.
Figure 3 depicts an example path through the platform model
from Figure 2. Pop and steal paths are also loaded from the
platform configuration JSON file.

Hence, each runtime thread’s logic simply consists of:

1) Search along its pop path for any work created by the

same thread at any place.

2) If no work has been found yet, search along its steal

path, only looking for work created by other threads.

3) Repeat #2 until either work is found or a runtime

shutdown signal is received by this thread.

When a runtime thread discovers a task along either its
pop or steal path, that task is immediately executed.

These paths are infinitely flexible, and so can be used to
encode any number of load balancing policies. For example,
a memory hierarchy-aware policy could be set by having
runtime threads traverse up the logical memory hierarchy
represented by the platform model. However, this is not a
property of pop and steal paths themselves but rather one
possible result of their flexibility.

4) Task Creation APIs: The generalized work-stealing
runtime must also expose APIs for placing and removing
tasks in deques in the platform model. These APIs may be
used by a programmer, but are also key to implementing the
pluggable HiPER modules described in Section II-C. HiPER
currently only supports C++ APIs.

The async API creates a task executing body at the place
closest to the current runtime thread:

async([] { body; });

The async_at API creates a task executing body at a
specific place:

async at([] { body; }, place);

HiPER’s API and runtime also support the use of promises
and futures for inter-task synchronization. A promise in
HiPER is a single-assignment, thread-safe container for
some value. A future is a read-only handle on that value.
Promises and futures can serve as a flexible, point-to-point
synchronization channel from one source task to many sink
tasks. Sink tasks may block on the future, only being released
when another task performs a put on the associated promise.



Promise and future objects can be created in HiPER using
standard C++ constructors and getters:

new promise t();

promise t *p =
= p->get_future();

future t f

Satisfying a promise, blocking on a future, and fetching
the put value from a future are simple member function calls:
p->put(nullptr);

f->wait();
val = f->get();

Additionally, the async_future API creates a task and
returns a future which will be automatically satisfied when
that task completes, while the async_await API creates a
task whose execution is predicated on the satisfaction of a
given future object:

future = async_future([] { body; });
async_await([] { body; }, future);

Bulk task synchronization is possible using the finish APIL.

finish waits for all tasks created in body before returning,
including transitively spawned tasks.

finish([] { body; });
Many combined variants of the task creation APIs exist

as well. For example, async_future await creates a task
whose execution is predicated on the satisfaction of a future,

and returns a future that is satisfied when that task completes.

HiPER also comes with an async _copy API which
asynchronously transfers data from a memory location in
one place to a memory location in another place:

async_copy(dst loc, dst place, src_loc,
src_place, nbytes);

C. Pluggable Software Modules

The final component of the HiPER system is its pluggable
modules. A single pluggable module adds user-visible APIs
that can be called to schedule module-specific tasks on the
HiPER work-stealing runtime. These tasks may perform
arbitrary logic. For example, an MPI module would extend
the HiPER user-visible APIs with functions from the MPI
standard. This would enable both 1) composability of familiar
MPI APIs with other HiPER modules, and 2) unified
scheduling of MPI communication with other work on the
HiPER runtime. A complete HIPER module includes:
1) A module initialization function registered with the
HiPER runtime which is called once during the life of
a process.

2) A module finalization function registered with the
HiPER runtime which is called once during the life of
a process.

3) A set of optional, special-purpose functions registered
with the HiPER runtime. For example, a module may
register itself as responsible for handling data transfers

between places of certain types in the platform model.

4) A set of functions added to the global HIPER names-
pace and accessible to programmers. These functions
extend the capabilities of HiPER to make use of a new
hardware or software component (e.g. GPUs, MPI,
hard disks). These user-facing functions are commonly
implemented by placing special-purpose, asynchronous
tasks at special-purpose nodes in the platform model.
As a result, all work created by HiPER modules
is scheduled together on a single unified runtime.
Examples of modules supported today include modules
for CUDA, MPI, OpenSHMEM, and UPC++.

One of the key characteristics of HIPER modules is that
they do not require that the software or hardware component
they support be aware of HiPER or of the other HiPER
modules.

A HiPER module is not part of the core HiPER runtime.
It therefore can be implemented by any third-party HiPER
user. Implementers of HiPER module are free to keep or
change the semantics of the HPC libraries they are adding to
HiPER’s namespace. For example, there is no way for HIPER
to enforce that a HIPER MPI module does not change the
semantics of an MPI API it exposes. However, in general we
suggest that modules maintain similar or identical semantics
for standard APIs and create new APIs for implementing
novel functionality.

To illustrate these points, we will perform several case
studies on existing HiPER modules below. Note that in
general, these HIPER modules may only implement a useful
subset of the APIs they are implementing (e.g. the MPI
module implements a subset of the MPI standard) and are
not necessarily full, specifications-compliant implementations
of the corresponding HPC libraries.

1) MPI Module: The MPI module implements a subset of
the APIs in the MPI standard, relying on a full MPI library
to handle the actual messaging (e.g. OpenMPI, MVAPICH,
etc.). For this communication module and the others described
below, no semantic changes are made to ordering or collective
requirements. For example, for all collectives a single task
from each MPI rank is expected to participate. Within a
rank, if an MPI_Send in one task must be issued before
an MPI Recv in another task to prevent deadlock, it is the
programmer’s responsibility to ensure the correct ordering
of those tasks.

Regarding the platform model and thread configuration,
the MPI module relies on a single “Interconnect” place
existing in the platform model and that place being on a
single thread’s pop and steal paths. This allows the MPI
module to configure the underlying MPI implementation
in MPI_THREAD FUNNELED mode, keeping MPI runtime over-
heads low. It is up to individual modules to make these
assertions about the current platform model during module
initialization.

Many MPI APIs are implemented using the following flow,
which we refer to as “taskifying”:



1) A C++ lambda is created which captures the inputs to
the MPI API being implemented, and which calls the
underlying MPI library’s implementation of that API.

2) This lambda is passed to the HiPER async at API
described in Section II-B4, targeting the Interconnect
place in the platform place graph.

3) A finish scope is used to block the calling task on
the completion of the spawned task. Under the covers,
this deschedules the calling task until the spawned MPI
task completes (i.e. creates a continuation).

4) At some time in the future, a runtime thread with the
Interconnect place on its pop or steal path discovers
the task created by step (2) and executes it. The
continuation is then eligible for execution. Note that
this is not a dedicated communication thread and
may search other places before finding work at the
Interconnect place.

For example, the HiPER Module implementation of
MPI Send is shown below:

finish([&] {
async_at([&] {
::MPI Send(buf, count, datatype,
dest rank, tag, comm);
}, interconnect);

1)

Asynchronous MPI APIs require a different approach.
At the API level, the HIPER MPI module makes a small
change to APIs like MPI_Isend, MPI Irecv, etc. by removing
the output MPI_Request argument which is normally used
to query on the status of an asynchronous message, and
replacing it by returning a future_t object whose satisfaction
is predicated on the completion of the asynchronous MPI mes-
sage. This future_t behaves as normal, supporting blocking
get calls and tasks being predicated on its satisfaction via
async_await.

In the runtime, asynchronous MPI APIs are implemented
as follows:

1) The asynchronous MPI API is called directly, produc-
ing an MPI_Request object.

2) A new promise t object is created, and it is stored
with the MPI_Request object in a list of pending MPI
operations.

3) A periodically polling asynchronous task is spawned
which iterates over the list of pending MPI operations,
finds any that have completed, and satisfies their
associated promise_t objects. If after iterating through
the pending list this polling task finds that there are
still pending MPI operations, it yields to allow other
useful work to be done before polling again. A polling
task is not created if one already exists.

4) The future t associated with the newly created
promise t is then returned from the HiPER MPI
function. It can be used to register other HiPER

work on the completion of the asynchronous MPI
communication.

Using future-producing APIs like these enables program-
mers to compose MPI messages with other work in the
system, such as task or accelerator parallelism. For example,
the code snippet below would trigger a task on the receipt
of an asynchronous MPI message.

fut = MPI Irecv(...);
async_await([=] { body; }, fut);

Note that we make no assumptions about how asyn-
chronous progression of communication is implemented in
the various communication runtimes. However, the periodic
polling on MPI_Request may give the MPI runtime opportu-
nities to make forward progress.

2) OpenSHMEM Module: The current version of the
OpenSHMEM specification (v1.3) makes no guarantees about
thread safety. The development of a HIPER OpenSHMEM
module enables the safe and standard-compliant use of
OpenSHMEM in multi-threaded applications. Like MPI, the
OpenSHMEM specification consists entirely of functions and
is not object-oriented like UPC++. As a result, many of the
supported OpenSHMEM APIs are implemented using the
“taskify” pattern described along with the MPI module in
Section II-C1.

The integration of OpenSHMEM into HiPER enabled the
development of novel OpenSHMEM APIs. For example, the
OpenSHMEM specification includes wait APIs which allow
an OpenSHMEM process to block waiting on a remote put
into its address space. While these are useful APIs for point-
to-point synchronization, their blocking nature wastes CPU
cycles and lowers application scalability. One extension to
the OpenSHMEM APIs enabled as part of the HIPER module
implementation was an asynchronous variant which makes
a task’s execution predicated on a put by a remote process,
called shmem _async_when:

shmem_async when(mem_addr, wait for val, [=] {
body;
i

3) CUDA Module: The CUDA Module supports basic
CUDA operations, such as blocking data transfers, asyn-
chronous data transfers, and asynchronous CUDA kernels.

The CUDA Module is the only module discussed here
which registers special-purpose functions with the HiPER
runtime. In particular, it registers itself as handling copies to
or from GPU places. Anytime a call to HiPER’s async_copy
API reads or writes a GPU place, it is automatically handed
off to the CUDA Module.

The CUDA Module uses the same polling technique as
the MPI Module (described in Section II-C1) to support
asynchronous CUDA operations satisfying HiPER promises.

D. Example HiPER Usage

Consider a three-dimensional stencil application, in which
the cells of a three-dimensional, regular grid are distributed



in only the z-direction among MPI ranks. Let us assume that
in this simplified application, a single data-parallel kernel is
run across the z values a given rank is responsible for before
a halo exchange occurs with neighboring ranks. This process
repeats on each of several time iterations.

In an MPI+OpenMP implementation, this application could
be implemented as something like the following:

for (t =0; t < nt; t++) {

// Process ghost regions on this rank in parallel

#pragma omp parallel for
for (...) {1}

// Transmit ghost regions to neighbors,
// and post receives

MPI_Isend(..., &reqs[0]);
MPI Isend(..., &reqs[1]);
MPI_Irecv(..., &reqs[2]);
MPI_Irecv(..., &reqs[3]);

// Process remainder of z values on this rank
#pragma omp parallel for
for (...) {1}

// Wait for all sends/recvs to complete
MPI Waitall(4, reqgs);
}

Using MPI+CUDA instead produces a slightly longer code
snippet. More importantly, doing so introduces more blocking
operations which may waste host CPU cycles. Additionally,
the inter-statement dependencies in the straight-line sequence
of API calls is unclear as a result of a lack of composability
between the CUDA and MPI APIs:

for (t = 0; t < nt; t++) {
// Process ghost regions on this rank in CUDA
stencil<<<...>>>(...);

// Copy ghost region from CUDA device
cudaMemcpy(..., cudaMemcpyDeviceToHost);

// Transmit ghost regions to neighbors,
// and post receives

MPI Isend(..., &reqs[0]);
MPI_Isend(..., &reqs[1]);
MPI Irecv(..., &reqsl[2]);
MPI_Irecv(..., &reqs[3]);

// Process remainder of z values on this rank
stencil<<<...>>>(...);

// Wait for all transmissions to complete
MPI Waitall(4, reqgs);

// Copy received ghost region to CUDA device
cudaMemcpy (..., cudaMemcpyHostToDevice);

}

However, it may also be possible to improve performance
by combining MPI, OpenMP, and CUDA by processing the
smaller ghost region with OpenMP to avoid a cudaMemcpy
while still offloading the main computational region to

CUDA. The code snippet below not only requires that the
programmer have expertise in OpenMP, CUDA, and MPI,
but also understand how to manage their interaction safely.

for (t = 0; t < nt; t++) {

// Process ghost regions on this rank in parallel

#pragma omp parallel for
for (...) {}

// Transmit ghost regions to neighbors,
// and post receives

MPI Isend(..., &reqs[0]);
MPI_Isend(..., &reqs[1]);
MPI Irecv(..., &reqgs[2]);
MPI_Irecv(..., &regs[3]);

// Process remainder of z values on this rank
stencil<<<...>>>(...);

// Wait for all transmissions to complete
MPI_Waitall(4, reqs);

// Copy received ghost region to CUDA device
cudaMemcpy (..., cudaMemcpyHostToDevice);

}

In contrast, expressing the same computational pattern
in HiPER’s future-based, composable programming model
would look like the following (assuming the user already has
the CUDA and MPI modules installed):

for (t = 0; t <nt; t++) {
// Place an outer finish scope to ensure all
// work completes before continuing to the next
// time step
finish([&] {

// Asynchronously process ghost regions on
// this rank in parallel
ghost_fut = forasync_future([] (z) { ... });

// Asynchronously exchange ghost regions with
// neighbors

reqs[0] = MPI Isend await(..., ghost fut);
reqs[1] = MPI_Isend_await(..., ghost_fut);
reqs[2] = MPI Irecv(...);

reqs[3] = MPI Irecv(...);

// Asynchronously process remainder of z
// values on this rank
forasync_cuda(..., [1 (z) { ... });

// Copy received ghost region to CUDA device
async_copy await(..., reqs[2], reqs[3]);
1)
}

Note that in the code listing above, dependencies are
expressed more naturally and between different software
components. Each asynchronous operation waits on precisely
the futures it needs to in order to ensure its dependencies are
maintained, input/output relations are visible as return values

and API parameters, and blocking operations do not actually
block CPU threads. At the same time, the future-based APIs



used to express CUDA parallelism and MPI communication
remain syntactically similar to their standard variants in order
to take advantage of existing programmer expertise.

III. EXPERIMENTAL EVALUATION
A. Experimental Setup

The experiments in this section were run on one of two
platforms: the Edison supercomputer at NERSC or the Titan
supercomputer at ORNL. Edison is a Cray XC30 with 2x12-
core Intel Ivy Bridge CPUs and 64 GB DDR3 in each
node. Titan is a Cray XK7 with a 16-core AMD CPU, an
NVIDIA K20X, and 32GB of DRAM in each node. For the
experiments listed below, Cray SHMEM v7.4.0 and GCC
v4.9.3 were used on Titan. GCC 5.2.0 was used on Edison.
All flat UPC++, MPI, or OpenSHMEM experiments are run
with 1 process pinned to each core. All hybrid experiments
on Edison are run with 2 processes and 12 threads per
process, and on Titan are run with 1 process and 16 threads
per process. All tests are repeated ten times, and error bars
shown represent 95% confidence intervals.

Our benchmark suite consists of:

1) HPGMG-FV [7]: “Implements full multigrid algorithms
using finite-volume... methods”. Uses the UPC++
and MPI modules. This is a weak scaling bench-
mark, and was run with log2 box dim=7 and tar-
get boxes per rank=8 based on the advice of the
HPGMG-FV developers.

2) ISx [6]: Integer sort benchmark. Uses the OpenSH-
MEM module. This is a weak scaling benchmark, and
was run with 2%° keys to sort per process.

3) GEO: A three-dimensional stencil application for
geophysical subsurface imaging. Uses the CUDA and
MPI modules, and tests weak scaling.

4) UTS [8]: Unbalanced tree search. Uses the OpenSH-
MEM module. This is a strong scaling benchmark, and
it was run with the T1XXL dataset.

5) Graph500 [9]: Parallel, distributed breadth first search
of a graph. Uses the MPI module. This is a strong
scaling benchmark, and was run using 23! vertices with
edge factor set to 16.

Space limitations prevent us from going into detail on the

implementation of each benchmark. However, note that all
benchmark code is available at [10].

B. Regular Workloads

Figures 4, 5, and 6 depict the weak-scaling of HPGMG-
FV, ISx, and GEO on Titan. We note that for HPGMG-FV
and ISx the HiPER and reference hybrid implementations are
comparable in performance. For GEO, HiPER consistently
improves performance by ~2% on average by reducing block-
ing CUDA operations through future-based programming.
The Flat OpenSHMEM implementation of ISx outperforms
the two hybrid versions at smaller node counts, it scales
poorly to 512 and 1024 nodes due to a global all-to-all.

1
0.8
2
.aé 0.6
<
S 04 A
=]
[
Q
3 0.2+
s
o
= 0 -
64 128 256 512
Total nodes on Edison (2 processes/sockets per node, 12 cores per process)
B UPC++ + OpenMP I HiPER
Figure 4. Total HPGMG solve time on up to 512 Edison nodes.
20
Z 15
()
£
S 10 A
kel
3
¢ 5
)
s
g 0
32 64 128 256 512 1024
Total nodes on Titan (16 cores per node)

I Flat OpenSHMEM I HiPER

s OpenSHMEM+OpenMP
Figure 5. Total ISx execution time. Weak scaling up to 1024 nodes on
Titan.

C. Irregular Workloads

We now turn to more irregular benchmarks, UTS and
Graph500. Due to the asynchrony of HiPER’s APIs and the
ability to more naturally express the algorithmic dependencies
of a parallel algorithm, we expect HiPER to perform better
on these types of workloads.

1) UTS: Figure 7 shows the overall execution time of UTS
using OpenSHMEM+OpenMP, OpenSHMEM+OpenMP
Tasks, and AsyncSHMEM. The OpenSHMEM+OpenMP
Tasks and AsyncSHMEM versions of this benchmark are
identical in the structure of their parallelism. All three
versions use manual, application-level, distributed load bal-
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Figure 6. Total GEO execution time. Weak scaling up to 32 nodes on
Titan.
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Figure 7. Total UTS execution time.

ancing, as do the reference UTS implementations.

The hand-coded OpenSHMEM+OpenMP version of UTS
scales similarly to HiPER up to 128 nodes, but starts
to degrade as contention from distributed load balancing
increases.

Because of the lack of integration between OpenSHMEM
and OpenMP, the OpenSHMEM+OpenMP Tasks version
must repeatedly use coarse-grain synchronization to wait
on all pending tasks before checking for completion and
performing distributed load balancing.

2) Graph500: We implement a version of Graph500
in HiPER based on the work in [18]. While we observe
little performance improvement to-date, the programmability
benefits have been significant. Both the reference Graph 500
implementations and the work in [18] must constantly poll
for incoming data from remote processes. This polling adds
overhead, and significantly complicates the implementation.

In our implementation of Graph500, we are able to use the
novel API introduced with this work, shmem_async_when, to
offload that polling to the HiPER runtime. Further details
are provided in [19].

IV. RELATED WORK

Past work has already explored the use of thread offload
for inter-node communication using techniques related to this
work [20-23]. These works demonstrated the performance
and scalability benefits of a dedicated communication thread
to which all communication is funneled; however, they were
all hard-coded to a single communication library (MPI or
UPC++), dedicated an entire OS thread to communication
(hurting the performance of more computationally-bound
applications), and in the case of [23] depended on changes
to the MPI runtime itself.

GPU-Aware MPI [24] enabled the direct communication
of data from a GPU sitting in one node of a cluster to another
GPU sitting in a different node using MPI APIs. This work
demonstrated both performance benefits from a more direct
data path and programmability benefits from using a single
asynchronous MPI call. While this work is restricted to
composing NVIDIA GPUs and MPI, the techniques used

are generally applicable. A future direction of the HiPER
project would allow registered modules to query for other
modules which they can integrate with.

Similarly, MPI-ACC [25, 26] enables direct, inter-node,
inter-GPU communication at the API level. Unlike GPU-
Aware MPI, the underlying MPI-ACC runtime does not rely
on vendor-specific technology. Instead, MPI-ACC offers a
platform-agnostic layer which automatically takes advantage
of detected hardware capabilities but is not reliant on them.

The MVAPICH2-X unified communication runtime [27]
extends MVAPICH?2 to support scheduling of both message
passing and PGAS workloads on a single communication
runtime. This work therefore enables safer and better perform-
ing composition of MPI with various PGAS programming
models, but is of course not a general-purpose composability
framework. In contrast, many other runtimes exist that serve
as the foundation for higher-level communication frameworks
that do not easily compose with other frameworks, such as
Adaptive MPI over the Charm++ runtime [28], or the many
PGAS languages over GASNet [29].

The recent introduction of target and task directives,
as well as the depend clause in OpenMP [30] have made
composing accelerators and host parallelism using OpenMP
possible. A programmer may create dependencies between
tasks running on the host and accelerator kernels. While
the abstractions offered by OpenMP theoretically enable
the composition of any accelerator with host parallelism, in
reality this support has only been added for GPUs. However,
like HiPER, the higher level abstractions of OpenMP mean
that the composability it enables has a much broader scope
than most related works.

There have also been several research projects into
composing GPUs with host +parallelism [15, 31-33]. In
general, the approach taken by these works is similar to that
taken by work on communication offload: a dedicated GPU
management thread is used to schedule work across all GPUs
in the system. These works have similar challenges, in that
they are usually hard-coded to a single accelerator type and
lose a whole OS thread to GPU management.

XKaapi [34] contributes a work-stealing, locality-aware
runtime for scheduling tasks with internal parallelism across
CPUs and GPUs. This runtime offers automatic data co-
herency across CPUs and GPUs and automatic load balancing
across devices. While the data coherency contributions are
less relevant today with the upcoming release of hardware-
supported GPU Unified Memory [35], the load balancing
contributions of XKaapi would ease programmer burden
when combining CPUs and GPUs.

Lithe [36] focuses on composing libraries that use one or
more processing units on a shared multi-processor. It proposes
APIs which allow these libraries to request and yield cores,
relative to a parent in the Lithe scheduler. While this is a
scalable and elegant solution, it does require modifications to
libraries to make them composable and its scope is limited



to composing systems that share the same computational
resource (e.g. an OpenMP host runtime and Intel MKL).

V. DISCUSSION & FUTURE WORK

While HiPER’s use of modules, generalized work-stealing,
and an abstract platform model makes it a general framework,
it is important to consider where it might struggle to enable
composable components. In particular, we believe HiPER’s
main challenge is in supporting components that share the
CPU with the HiPER runtime itself. For example, supporting
composable MKL would require logic in the HiPER runtime
for 1) forfeiting CPU cores for the use of MKL, and 2)
scheduling MKL on those cores specifically. Indeed, this is
the exact challenge that Lithe [36] solves, demonstrating that
this type of composition will require modifications to the
software components themselves, an undesirable property
and something HiPER currently avoids.

An important item to note is the tooling that HiPER enables.
Like any unified scheduler, the HiPER runtime is aware of all
of the work executing on a system. Hooks have been added
to the HiPER runtime which enable programmers to gather
statistics on time spent in calls to different modules. HIPER
can add high-level, module-specific semantic information
on performance bottlenecks. This information was useful in
optimizing applications and the HiPER runtime itself.

Ongoing work looks at how inter-component awareness
enables inter-component optimization. With the authors of
the OpenSHMEM Contexts proposal [37], we are actively
exploring how cooperation between the HiPER runtime and
a communication runtime enables optimizations.

In addition, there are three types of modules which are
left for future work but which we expect to fit well with the
HiPER abstractions. First, a HIPER module for checkpointing
of application state would enable overlapping of checkpoint
I/O with useful application work. Second, we plan continued
work on HIPER’s data movement APIs, particularly for
accelerators, NVRAM, and other future memory technologies.
Third, while this section discussed how integrating with host-
based numerical libraries would be challenging, supporting
accelerator-based numerical libraries would be an important
extension.

VI. CONCLUSIONS

In conclusion, HiPER is a framework for enabling the
composition of a variety of software components, includ-
ing accelerator libraries, communication libraries, storage
libraries, and host parallelism. Using a foundational work-
stealing runtime, an abstract platform model, and pluggable
software modules HiPER enables unified scheduling of near-
arbitrary software components, as well as the expression of
dependencies between them.
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