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ABSTRACT
While Partitioned Global Address Space (PGAS) programming lan-
guages such as UPC/UPC++, CAF, Chapel and X10 provide high-
level programming models for facilitating large-scale distributed-
memory parallel programming, it is widely recognized that com-
piler analysis and optimization for these languages has been very
limited, unlike the optimization of SMP models such as OpenMP.
One reason for this limitation is that current optimizers for PGAS
programs are specialized to different languages. This is unfortu-
nate since communication optimization is an important class of
compiler optimizations for PGAS programs running on distributed-
memory platforms, and these optimizations need to be performed
more widely. Thus, a more effective approach would be to build
a language-independent and runtime-independent compiler frame-
work for optimizing PGAS programs so that new communication
optimizations can be leveraged by different languages.

To address this need, we introduce an LLVM-based (Low Level
Virtual Machine) communication optimization framework. Our
compilation system leverages existing optimization passes and in-
troduces new PGAS language-aware runtime dependent/indepen-
dent passes to reduce communication overheads. Our experimen-
tal results show an average performance improvement of 3.5× and
3.4× on 64-nodes of a Cray XC30TM supercomputer and 32-nodes
of a Westmere cluster respectively, for a set of benchmarks written
in the Chapel language. Overall, we show that our new LLVM-
based compiler optimization framework can effectively improve the
performance of PGAS programs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Compilers
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1. INTRODUCTION
PGAS (Partitioned Global Address Space) programming languages

such as Chapel, Co-array Fortran, Habanero-C, Unified Parallel C
(UPC), UPC++, and X10 [9, 24, 11, 13, 33, 10] support highly
productive programming models. PGAS programming languages
aim to reduce the complexity of writing distributed-memory paral-
lel programs compared to conventional message-passing program-
ming models such as MPI [15]. They also aim to simplify par-
allel programming by introducing global operations on distributed
arrays, distributed task parallelism, directed synchronization and
mutual exclusion. These high-level language constructs offer many
opportunities for enabling compiler developers to build parallelism-
aware program optimization. For example, some prior work [4] fo-
cused on reducing communication overheads across multiple nodes
for distributed X10 programs. The UPC compiler also introduced
optimizations to reduce communication overheads by recognizing
language-specific runtime API calls [6].

However, these past efforts have been specific to different lan-
guages and runtimes. In contrast, we believe it is feasible to build
a common compiler parallel intermediate representation (PIR [32])
that supports new optimizations for multiple PGAS languages be-
cause these languages have semantically similar features for ex-
pressing parallelism, synchronization, and communication. To sup-
port the PIR based compiler infrastructure that can uniformly op-
timize PGAS programs, we chose LLVM (Low Level Virtual Ma-
chine) [21] since LLVM is widely used and provides modern language-
and target-independent optimization passes.

In this work, we demonstrate LLVM-based optimizations for
Chapel programs, with an initial focus on communication opti-
mizations. However, these optimizations are applicable to any PGAS
language that supports translation to LLVM. We built an LLVM-
based Chapel compiler that takes Chapel programs, creates LLVM
IRs, applies LLVM optimization passes, and generate target code.
Our compilation framework uses the address space feature in LLVM
to distinguish between remote and local data, which corresponds
to a PIR representing remote/local communications, thereby pro-
viding a language and runtime-independent representation for the
local/remote data communications. The remote data accesses can
be expressed as LLVM load/store/memcpy instructions that involve
a designated address space (e.g. address space 100). This means
that classic LLVM optimization passes (e.g. loop invariant code
motion) can be applied to eliminate redundant data access even for
remote data. Additionally, the compiler performs several PGAS-
aware communication optimizations. Finally, instructions involv-
ing remote address space pointers that remain are lowered to run-
time communication API calls such as get and put that operate on
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1 // before LICM (Chapel)
2 var remoteData : int; // On Node X
3 ...
4 for i in 1..N { // On Node Y
5 data = remoteData; // from Node X
6 ...;
7 }

Figure 1: Communication optimization example for Chapel
pseudo-code. For each Chapel example, the loop is executed
on node Y and reads remoteData from Node X. In the case that
remoteData is a loop invariant, the loop invariant code motion
(LICM) can be applied to reduce redundant communications.

the remote pointers.
This paper makes the following contributions:

1. A uniform LLVM-based communication optimization frame-
work for PGAS programs.

2. An optimization strategy using the address space feature in
LLVM to enable existing LLVM optimizations to apply to
operations on both local and remote data.

3. New LLVM-based optimizations built on top of our frame-
work.

4. Performance evaluation of LLVM-based Chapel compiler on
a Intel Xeon Cluster and a Cray XC30TM system.

The rest of paper is organized as follows. In Section 2, we sum-
marize background on PGAS languages. Section 3 describes our
LLVM-based communication optimization framework and how it
can be used to leverage existing LLVM optimizations. Section 4
summarizes new LLVM optimizations that can be used to reduce
communication operations in PGAS programs. Section 5 presents
an experimental evaluation. We discuss related work in Section 6
and conclude in Section 7.

2. PGAS LANGUAGES
Parallel computing is now moving to the Extreme Scale [28]

computing era and this poses challenging problems in software
development. In the context of parallel programming, message-
passing programming models with communication APIs such as
MPI (Message Passing Interface) [15] are ubiquitous. These mod-
els adopt an SPMD (Single Program Multiple Data) programming
paradigm1, which simplifies the runtime support needed to manage
large number of processors. The use of MPI, however, adds com-
plexity since programmers have to orchestrate data transfers across
large number of nodes by using MPI’s inter-node communication
library, which does not support a global address space2.

In contrast, PGAS (Partitioned Global Address Space) program-
ming languages such as Co-Array Fortran, UPC, UPC++, Tita-
nium, Chapel and X10 [24, 13, 33, 16, 9, 10] aim to increase pro-
ductivity and portability by providing high-level language features
that include explicit task parallelism, data distribution, operations
on global or distributed arrays, and synchronizations. For example,
each array and variable can be either remote or local, and remote
data operations can be expressed as just an assignment statement
(e.g “data = remoteData;” in Figure 1). The compiler will trans-
late the assignment statement to appropriate put / get API calls in
1MPMD was also introduced in MPI 2.0.
2Recent extensions to the MPI standard now included support for
one-sided communications, but that it’s still not the same as support
for a global address space.
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Figure 2: LLVM-based Communication Optimization Frame-
work.

communication layers like GASNet [7], OpenSHMEM [27], PAMI
[20], or MPI [29].

3. ENABLING EXISTING LLVM PASSES FOR
COMMUNICATION OPTIMIZATIONS

In this section, we introduce the communication optimization
framework to reduce redundant remote data accesses, and thereby
improves the efficiency of data communication in PGAS programs.

The structure of our compiler optimization framework is pre-
sented in Figure 2. First, a language frontend generates LLVM
IR with some properties (see Section 3.1 and Section 3.2). The
LLVM IR is referred to as the PGAS LLVM IR in the following.
Then our framework applies LLVM-based optimization passes to
perform communication optimization (see Section 3.3). Finally,
remote references are lowered to communication API calls such
as GASNet get/put (see Section 3.4). Our current implementation
supports the Chapel language.

3.1 PGAS LLVM IR
Since PGAS language constructs have explicit information on

parallelism, PGAS programming languages offer opportunities for
enabling the compiler to perform parallel-aware optimizations. Un-
like prior studies [4, 6] which focus on optimizations for specific
languages, we believe it is feasible to build a compiler infrastruc-
ture that can uniformly optimize PGAS programs. The key idea is
to build a common compiler backend for PGAS program languages
which enables compiler writers to build language- and target- inde-
pendent compiler optimizations.

To motivate our framework, we show how the classical Loop In-
variant Code Motion (LICM) optimization can be used to reduce
communication overheads in PGAS programs. Figure 1 shows an
example where LICM hoists communication out of a loop. To en-
able this optimization, we use the address space feature of LLVM.
In LLVM, each pointer type has an address space, which can dif-
ferentiate between different kinds of memory in a system [22]. In
this work, we use the address space feature to distinguish possibly-
remote and definitely-local references (see Section 3.2). For exam-
ple, a read from a remote node (Line 5 in Figure 1) can be expressed
as a LLVM load instruction that involves a special address space:

%1 = load i64 addrspace(100)* %remoteData

In our convention, address space 100 indicates a possibly-remote
address. Now that a remote reference can be represented as a stan-
dard load instruction, the existing LICM optimization in LLVM can
move the remote read to the outside of loop (e.g. Line 3 in Figure 1)
provided that the remote reference is a loop invariant. Similarly,



other existing LLVM optimizations can remove redundant commu-
nications that are described as accesses with the address space 100.
After these optimizations have completed, operations on pointers
with address space 100 will be lowered to a runtime communica-
tion API. It is worth noting that we do not extend the LLVM IR.
We just utilize the existing address space feature of LLVM as a PIR
to enable communication optimizations for PGAS programs.

3.2 Code generation for PGAS LLVM
In order to enable existing LLVM optimizations to apply to com-

munication in PGAS programs, a PGAS programming language
front-end needs to generate LLVM IR with the address space fea-
ture. In particular, the PGAS LLVM IR needs to include global
pointers, which are an alternative way of representing a pointer to
possibly remote memory and are recognizable by LLVM as pointer
types, instead of the typical structure representation of wide point-
ers that include at least a node number and a local address. The
language front-end needs to use normal memory operations - such
as load and store - for operations involving global pointers instead
of calling runtime functions implementing GET or PUT. In other
words, a GET/PUT can be modeled as a special kind of load/store
operation.

In our current implementation, global pointers are pointers in ad-
dress space 100. Address space 0 pointers continue to refer to local
data. Encoding the possibly-remote nature of a pointer type in this
manner allows existing LLVM optimizations to work with remote
memory operations as if they were local. After the optimizations
have completed, all global pointers will be converted to a standard
wide pointer representation for use by the runtime system.

Operations on global pointers need to be generated as load or
store instructions instead of calls to the runtime functions imple-
menting GET and PUT. In addition to load and store with global
pointers, our framework also handles memcpy and memset op-
erations, where at least one of the pointer arguments is a global
pointer. Thus, a GET can be generated as a load of a global pointer
or a memcpy with a local destination and a global pointer source.
Likewise, a PUT can be generated as a store to a global pointer or
a memcpy with a global pointer destination and a local source.

It is also sometimes necessary to extract information from a global
pointer. In order to support these operations, the LLVM code gener-
ated can include calls to the following placeholder functions which
only exist during optimization:

• addr extracts the address from a global pointer argument

• loc extracts the locale from a global pointer argument

• node extracts the node number portion of the locale from a
global pointer argument

• make constructs a global pointer from a locale and an address

• global-to-wide converts a global pointer to a wide pointer

• wide-to-global converts a wide pointer to a global pointer

These functions, along with the global pointers themselves and
the operations on them, will be replaced with the usual runtime
functions (e.g. PUT and GET) when all global pointers are low-
ered into wide pointers by the global-to-wide pass which is de-
scribed below.

3.3 Existing LLVM optimization passes
Existing LLVM optimization passes are applied to the PGAS

LLVM IR that now uses loads and stores on global pointers instead

of GETs and PUTs. For example, the existing Loop Invariant Code
Motion pass might hoist a GET - now represented as an invariant
load from a global pointer - out of a loop (as discussed in Figure
1). In this way, existing LLVM optimization passes that eliminate
redundant memory operations can remove communication in the
PGAS program.

Note that if the global pointer technique was not applied, the ex-
isting LLVM optimization passes would not be able to optimize
the communication in a PGAS program. In the Loop Invariant
Code Motion example, the GET inside the loop would be a call
to a runtime function that reads from the network. Without addi-
tional knowledge, existing optimization passes will treat runtime
calls as an unknown function calls, and will not be able to perform
any optimization on the runtime calls.

3.4 Lowering remote accesses (global-to-wide)
After running the LLVM-based optimizations, our optimization

framework performs a global-to-wide pass to lower the global
pointers to wide pointers and to translate operations on global point-
ers into operations on wide pointers supported by the language run-
time.

The global-to-wide pass operates in two phases: an interpro-
cedural phase and a function body transformation phase. An impor-
tant assumption of this pass is that the global pointers marked with
address space 100 have the same size as the wide pointers to which
they will be translated, though their formats may be different.

In the interprocedural phase, this pass updates all function signa-
tures and globals to translate from global types to wide types. Each
function body is updated to call the placeholder function wide-to-
global on its now-wide arguments to provide the value to replace
the old argument. Similarly, each function body updated to call
global-to-wide on any global pointer return value in order to con-
vert it to a wide pointer type. In this phase, call sites are also up-
dated by inserting calls to global-to-wide for all of the arguments
by adding a call to wide-to-global for the result.

In the function body transformation phase, the pass replaces all
operations on global pointers with the equivalent operations on the
corresponding wide pointers. It replaces loads of a global pointer
with a call to the runtime function to perform a GET; stores with
calls to PUT; memcpys with calls to a runtime function to perform
a GET, PUT, or GET and PUT. Pointer arithmetic operations, such
as getelementptr, are replaced with the corresponding arithmetic
on wide pointers. In addition, the placeholder functions described
above for working with global pointers, including addr, loc, node,
and make are replaced with their equivalent versions that generate
wide pointers. Lastly, calls to the placeholder functions global-to-
wide and wide-to-global are removed since all global pointers have
been converted to wide pointers.

Note that in the current implementation, the global-to-wide
pass requires that the wide pointer representation be 64 bits. In
order to work with this limitation, we use a packed pointer format
- where the first 16 bits are the node number and the remaining 48
bits form an address. This limitation is due to the fact that LLVM
3.3 did not support differently sized pointers for different address
spaces - and address space 0 pointers are 64 bits on platforms of
interest. We look forward to removing this limitation when using
newer versions of LLVM.

3.5 Supporting various PGAS languages
This section discusses how our compilation framework enables

the existing LLVM optimizations passes for various PGAS lan-
guages.

3.5.1 Generation of Global Pointers



In our framework, a load/store/memcpy/memset instruction that
involves a specific address space is used to model an access through
a pointer to possibly-remote data. Since our initial implementation
works with Chapel, our global pointers only include a locale and
an address; however, the LLVM global pointer optimizations do not
need to see the internal implementation details of global pointers.

OpenSHMEM/UPC++ could also be easily optimized with our
framework since its communication API calls take node ID and an
address, as in Chapel’s wide pointer. However, a shared pointer in
the UPC language contains thread number, local address of block,
and phase (position in the block)3. That might require the front-
end to insert a sequence of statements that calculate node ID and
an address within a node when processing a read/write statement
from/to shared pointer. Alternatively, an implementation could ad-
just the PUT and GET calls to work with shared pointers containing
phase - so that each PUT or GET might result in communication
to more than one other node. In any case, there is a Clang-based
UPC compiler under development which would integrate more eas-
ily with our framework. In CAF, a data access with a co-dimension
indicates a possibly-remote access that could be optimized by our
framework. In X10, the remote data transfers are performed by
task level, (e.g. the at construct). The optimization can be done by
applying LLVM pass to the special code blocks that correspond to
those remote tasks.

3.5.2 Memory Consistency Model
Since existing LLVM optimizations will now be used to opti-

mize communication, these optimizations will need to be subject
to the PGAS language memory model. In this section, we briefly
summarize the memory model assumptions made in this paper. We
observe that LLVM provides flexibility for a front-end designer to
support a wide range of memory models [22]. Therefore, we be-
lieve that our approach can support a specific language’s memory
consistency model by inserting appropriate fence (or equivalent)
instructions when generating LLVM IR.

For Chapel in particular, the LLVM optimizations normally ap-
plied to C programs are safe to run because the memory consistency
requirements for remote accesses are no more strict than those for
local accesses. Since a commonly-used implementation of Chapel
is via generation of C code, that implementation implicitly assumes
that Chapel’s memory model will be compatible with the C11 mem-
ory model.

Chapel’s memory model has recently been formalized and is
similar to C11 [9].

An interesting aspect of the UPC memory model is that it al-
lows for some variables to have relaxed memory model seman-
tics and others to have strict memory model semantics. UPC’s re-
laxed memory model semantics are compatible with C11’s memory
model, whereas an implementation of UPC’s strict memory model
will need to add fence operations (or equivalent) for accesses to
strict shared variables.

4. NEW LLVM-BASED COMMUNICATION
OPTIMIZATIONS

In addition to the existing LLVM-based optimization passes, our
framework allows a compiler designer to implement their own op-
timization passes built on top of our PGAS LLVM IR. A compiler
designer may want to build an optimization pass which is special-
ized to runtime independent or runtime dependent features. This

3UPC++’s global pointers no longer contains the block and phase.

1 record Point { var x,y,z:int; }
2 var A:[1..N] Point; // an array of Points
3 on Locales[X] { // On another Locale
4 for i in 1..N {
5 sum += A[i].x + A[i].y + A[i].z;
6 }
7 for i in 1..N {
8 part += A[i].x + A[i].z;
9 }

10 }

Figure 3: Example Chapel program which benefits from the
aggregate-global-ops pass.

section introduces the three new LLVM-based communication op-
timizations introduced in this work: aggregating remote accesses,
locality analysis and optimization, and coalescing of data transfers.

4.1 Aggregating remote accesses
Our new aggregate-global-ops pass identifies operations on

global pointers that can be combined into a single memcpy in order
to aggregate PUTs and GETs. This pass works on the PGAS LLVM
IR to find sequences of loads or sequences of stores on adjacent
memory locations sharing a global pointer base address and turns
them into a single memcpy. In this manner, loads from adjacent
global pointers will generate a single GET and stores to adjacent
global pointers will generate a single PUT. This optimization is
important to our framework because existing LLVM optimizations
can break apart a small memcpy data transfer into individual loads
and stores, which can result in performance improvements for lo-
cal accesses due to elimination of the memcpy() function call over-
heard. However, when the loads and stores access remote mem-
ory, it actually hurts performance to split a memcpy() into multiple
loads and stores, since each load/store call will translate to a sep-
arate get/put communication call. A single aggregated get/put call
would be much better instead. Figure 3 shows an example Chapel
program working with records containing three fields - x, y, and
z. It would not be unusual for the program to access all three of
these fields in sequence as is shown on line 5. When that happens,
the current Chapel front-end will generate three different GET re-
quests - one for each field access. These GETs can be combined
into a single request by the aggregate-global-ops pass.

The aggregate-global-ops pass is implemented in a similar
manner to the existing memset optimization in LLVM. The memset
optimization combines stores of a constant byte pattern to provably
adjacent memory regions into memsets. Both of these optimiza-
tions look for sequences of memory operations that are working
with addresses computed from the same base pointer and that have
compile-time known offsets. The aggregate-global-ops opti-
mization considers only memory operations through global point-
ers and considers both loads and stores. It replaces these operations
with memcpy to or from a stack-allocated communication buffer
and loads or stores on the communication buffer. One interesting
feature of this optimization is that it can choose to aggregate non-
contiguous GETs if the gap along them is small enough. This case
can be seen in the example in Figure 3 on line 8. Fields x and z
are requested but the optimization will request the intervening data
(the y field) even though it will not be used. This ability helps in
reducing the number of messages.

4.2 Locality analysis and optimization
The special address space (addrspace 100 in this paper) indi-

cates a possibly-remote reference at compile-time, which means
that the accessed data may be local or remote at runtime for dif-
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Figure 4: Performance improvements by removing runtime
affinity checking by compiler on a single node of the Westmere
cluster and a single node of the Cray XC.

1 var A[1..N]: int; // locale-local array
2 if (x == 0) {
3 p = y;
4 } else {
5 local { p = z; } // local stmt
6 }
7 z = A(0) + z; // definitely local

Figure 5: Example Chapel program which benefits from the
locality optimization pass.

ferent instances of the same static reference. This variability is
a consequence of the dynamic communication features of PGAS
languages, which simplify the code needed to support data distri-
butions, place-shifting, local/remote actual arguments for the same
formal parameter, etc. To enable this flexibility, the runtime will
check the affinity of data and perform either intra-node or inter-
node communications. This check adds non-trivial overhead to an
intra-node memory access. Figure 4 demonstrates the performance
gain from eliminating runtime affinity checking on a single node
of a Westmere cluster and a single node of a Cray XC30TM system
with matrix multiplication in Chapel (The detailed information on
these platforms is shown in Section 5). The results show signifi-
cant performance improvements (3.1x on average) by eliminating
redundant runtime affinity checking on both platforms. This mo-
tivates us to infer an appropriate address space to avoid runtime
affinity checking as much as possible at compile time. This tech-
nique is particularly effective for a language which permits implicit
accesses to remote locations such as Chapel.

We introduce a novel locality analysis for identifying which possibly-
remote accesses are guaranteed to be definitely-local. This analysis
problem is challenging because it can require bidirectional dataflow
analysis in general.

In Figure 5, consider an assignment statement p = z, where
p and z are global pointers. If these variables are known to be
definitely-local (e.g. by Chapel’s local statements), the def/use of
p and z in the other statements (Line 3 and 7) must be definitely-
local. Similarly, the declaration of array A in Line 1 implies that A
should be definitely-local since it is not distributed. Space limita-
tions prevent us from including more details on the locality analysis
and optimization. However, the impact of this optimization is in-
cluded in the results presented in Section 5.

4.3 Runtime-Specific Data transfer Coalesc-
ing

Coalescing multiple remote data accesses into a single remote
read/write operation has been widely used to optimizing distributed

applications [4]. In our framework, we implement a data trans-
fer coalescing that buffers remote read/write operations on top of
PGAS LLVM IR. This pass is runtime specific since it uses the par-
allel programming language’s runtime support for bulk data trans-
fer. We use scalar expansion to replace the remote data access with
local load/store operations on a memory buffer. This algorithm
works on the call graph in a bottom-up manner. For each loop
nest in each function, the optimization performs coalescing from
inner most loop to outer most loop. The May-Happen-In-Parallel
analysis [1] is applied to detected possible data races, and thereby
ensures the correctness of the transformation.

5. PERFORMANCE EVALUATIONS
This section presents experimental results for our extended LLVM-

based Chapel compiler on two platforms.
The first platform is an Intel Westmere cluster. This platform has

multiple Intel Westmere nodes connected over a Quad Data Rate
InfiniBand interconnect at 40 Gb/s. Each node has two 6-core Intel
Xeon X5660 CPUs at 2.83GHz. There are 4GB of RAM per CPU
core, with a total 48GB of RAM inside a single node.

The second platform is a Cray XC30TM supercomputer. The plat-
form has multiple Intel E5 nodes connected over the Cray Aries
interconnect with Dragonfly topology with 23.7 TB/s global band-
width. Each node has two 12-core Intel Xeon E5-2695 v2 CPUs at
2.40GHz and 64GB of RAM.

We use a modified version of Chapel compiler 1.9.0 with LLVM
3.3. In particular, we took the standard v 1.9.0 release of the Chapel
compiler, and added the use of the LLVM-based locality optimiza-
tion and coalescing passes reported in this paper. Note that our
work on enabling existing LLVM optimizations and the aggrega-
tion pass is already implemented as the –llvm-wide-opt option in
the standard Chapel compiler4. The –fast option is used for this
evaluation. The Chapel runtime use the GASNet library 1.22.0 [7]
for inter-node communication via Infiniband5 and Cray Aries.

The six benchmarks shown in Table 1 are executed across multi-
ple nodes. Stream-EP, NPB EP, and SSCA2 were obtained from
the Chapel repository [30]. Smith-Waterman, Cholesky and So-
bel were ported to Chapel from their original UPC implementation.
In these experiments, we use up to 32 nodes on the Westmere clus-
ter and 64 nodes on the Cray XC. For Chapel, qthreads 1.10 [31] is
used for enabling light-weight worker thread creation within a sin-
gle node. 12 qthread workers and 48 qthread workers are running
on the Westmere cluster and the Cray XC respectively.

We measured performance on multiple nodes using Chapel com-
piler’s code generation in the following three LLVM-based modes:

• Baseline ( LLVM-unopt ) : uses the LLVM-backend with
a packed wide pointer representation and without activating
the LLVM communication optimizations. LLVM optimiza-
tions run but cannot optimize communication.

• Global Pointer Optimization ( LLVM-gopt ) : Code gen-
eration with global pointers + Existing LLVM passes + Ag-
gregation pass + Lowering pass, which corresponds to –llvm-
wide-opt in the standard Chapel compiler

• All LLVM-based Communication Optimizations ( LLVM-
allopt ) : Global Pointer Optimization + Locality optimiza-
tion + Coalescing.

4This paper is the first to publish the internal details of the –llvm-
wide-opt option
5OpenMPI 1.6.3 is used for GASNet initialization



Benchmark Lang Summary Data Size
Smith-Waterman Chapel Sequence alignment algorithm for DNA/RNA N = 185,600×192,000, Tile Size = 2,900×3,000
Cholesky Decomp Chapel Decomposition of a Hermitian matrix N = 10,0002 Tile Size = 5002

NPB EP Chapel Generation of independent Gaussian random variates using
the Marsaglia polar method from NAS Parallel benchmark,
ported to Chapel

CLASS = D

Sobel Chapel Sobel edge-detection algorithm from UPC benchmark,
ported to Chapel

N = 48,0002 for Westmere, 24,0002 for Cray XC, Tile Size
= 3,0002 for Westmere, 1,2002 for Cray XC

SSCA2 Kernel 4 Chapel Graph Theory Benchmark from [3], ported to Chapel SCALE = 16, 4D Torus Graph, it is necessary to limit the
number of tasks per locale to around 4 using the flag –
dataParTasksPerLocale=4 to throttle the nested parallelism
inherent in the algorithm.

Stream EP Chapel Simple vector kernel from HPC Challenge Benchmark 230

Table 1: Information on the benchmarks used to evaluate the Chapel compiler.

In the following sections, these three variants are referred to as
LLVM-unopt , LLVM-gopt , and LLVM-allopt respectively.

The following four metrics were used to show the impact of our
LLVM-based optimizations. Note that Locales is a Chapel’s term
which corresponds to 1 physical node.

• Performance Improvement : Figure 6 shows the speedup
numbers of the six benchmarks on the Westmere cluster (up
to 32 locales) and the Cray XC (up to 64 locales) relative to
the LLVM-unopt version.

• Breakdown for performance improvements : Figure 6 also
shows breakdown for average performance improvement by
the existing LLVM passes, aggregation pass, locality opti-
mization pass, and coalescing on the Cray XC6.

• Analysis of generated code by LLVM : We analyze how
our LLVM-based optimization passes transform each bench-
mark. (Figure 7)

• Number of Chapel Communication API calls : Table 2
shows the amount of Chapel communication API calls RE-
MOVED by LLVM-gopt and LLVM-allopt relative to LLVM-
unopt on the Cray XC6.

5.1 Summary of Results
As shown in Figure 6, LLVM-gopt (existing LLVM passes +

aggregation pass + lowering pass) and LLVM-allopt ( LLVM-
gopt + locality optimization + coalescing) are faster than LLVM-
unopt (LLVM optimization run but cannot optimize communica-
tions). Specifically, LLVM-gopt and LLVM-allopt are 2.0× and
4.4× faster than LLVM-unopt on average on the Westmere clus-
ter. For the Cray XC30 supercomputer, LLVM-gopt and LLVM-
allopt are 1.9 × and 5.1× times faster than LLVM-unopt on aver-
age.

Smith-Waterman and SSCA2 Kernel 4 do not show scalability
on the Cray XC due to high-overheads in Chapel’s communication
runtime which is built on top of GASNet. An experiment with a
synthetic benchmark indicated that Chapel programs have higher
communication cost with our GASNet configuration on the Cray
XC than on the Westmere cluster.

5.2 Breakdown for Performance Improvement
We first analyze the dynamic number of Chapel communication

APIs made by each applications. As shown in Table 2, we observed

6We omit results on the Westmere cluster because the results are
quantitively similar

Benchmark Comm Kind Cray XC
LLVM-gopt LLVM-allopt

Smith-Waterman LOCAL_GET 63.6% 75.5%
Note : obtained with REMOTE_GET 36.4% 36.7%
18,560x19,200 input LOCAL_PUT 58.0% 58.0%

REMOTE_PUT 0.0% 0.0%
Cholesky LOCAL_GET 77.6% 87.9%

Note : obtained with REMOTE_GET 84.7% 99.8%
2,000x2,000 input LOCAL_PUT 10.3% 10.8%

REMOTE_PUT 0.0% 0.0%
NPB EP LOCAL_GET 58.6% 58.6%

REMOTE_GET 39.7% 39.7%
LOCAL_PUT 29.5% 58.8%

REMOTE_PUT - -
Sobel LOCAL_GET 74.6% 95.2%

Note : obtained with REMOTE_GET 0.0% 0.0%
CLASS=B LOCAL_PUT 35.8% 68.3%

REMOTE_PUT - -
SSCA2 LOCAL_GET 55.6% 56.2%

REMOTE_GET 60.9% 60.8%
LOCAL_PUT 5.6% 3.8%

REMOTE_PUT 0.0% 0.0%
Stream-EP LOCAL_GET 70.6% 70.6%

REMOTE_GET 35.7% 35.7%
LOCAL_PUT 17.3% 17.3%

REMOTE_PUT 0.0% 0.0%

Table 2: The amount of Chapel Comm API calls REMOVED
by LLVM-gopt and LLVM-allopt relative to LLVM-unopt
(Cray XC, 16 locales).

decreases in the number of PUTs and GETs in addition to reduc-
tions in runtime. In particular, some amount of LOCAL_GETs and
LOCAL_PUTs are removed by LLVM-allopt since it removes
redundant affinity checking with locality optimization. (see Sec-
tion 4.2)

In the following, we show how our framework optimizes each
program by analyzing generated code by our LLVM-based opti-
mizations. Detailed information on code transformation is pre-
sented in Figure 7.

5.2.1 Smith-Waterman
Since there are common array subscripts (e.g. A(ii,jj) and A(ii,jj-

1)) in a main computation loop in Smith-Waterman7, one of the
existing LLVM passes replaces some of GETs with a variable hold-
7In Smith-Waterman, LLVM-gopt and LLVM-allopt on 2 lo-
cales on the Westmere cluster are in dead-lock. But this does not
mean a problem in LLVM-backend because the conventional C-
Backend also has this problem.



Platform
# of

Locales Backend
Smith-

Waterman Cholesky NPB EP Sobel SSCA2 Stream-EP

Westmere

1
LLVM-unopt 756.2 sec 982.9 sec 3745.3 sec 7488.5 sec 2569.0 sec 6.6 sec
LLVM-allopt 298.6 sec 292.9 sec 3005.1 sec 7231.0 sec 2449.2 sec 2.4 sec

C-backend 206.6 sec 241.5 sec 2407.8 sec 6746.9 sec 2196.7 sec 2.56 sec

32
LLVM-unopt 408.9 sec 408.9 sec 116.2 sec 232.1 sec 444.0 sec 0.26 sec
LLVM-allopt 163.5 sec 79.3 sec 92.8 sec 222.2 sec 443.1 sec 0.106 sec

C-backend 142.0 sec 730.9 sec 77.7 sec 206.9 sec 607.1 sec 0.107 sec

Cray XC

1
LLVM-unopt 480.11 sec 533.1 sec 920.5 sec 3927.6 sec 368.4 sec 1.8 sec
LLVM-allopt 190.1 sec 201.7 sec 686.0 sec 3640.6 sec 326.1 sec 0.8 sec

C-backend 115.6 sec 188.9 sec 548.3 sec 3796.4 sec 194.7 sec 0.8 sec

32
LLVM-unopt 683.3 sec 1527.4 sec 30.1 sec 121.9 sec 2112.7 sec 0.09 sec
LLVM-allopt 327.3 sec 119.8 sec 21.8 sec 93.2 sec 1943.0 sec 0.03 sec

C-backend 359.0 sec 730.9 sec 18.1 sec 99.0 sec 2221.97 sec 0.03 sec

64
LLVM-unopt 693.9 sec 1514.7 sec 15.5 sec 56.4 sec 2097.5 sec 0.04 sec
LLVM-allopt 309.0 sec 118.0 sec 11.0 sec 50.9 sec 2032.9 sec 0.016 sec

C-backend 347.7 sec 1356.8 sec 12.7 sec 40.7 sec 2234.9 sec 0.017 sec

Table 3: Absolute performance numbers for each benchmark.

ing the same value obtained by a predecessor GET by load elimi-
nation. To explain how it works, it is worth mentioning how the
generated code accesses an element of Chapel array. The steps are
1) GET a pointer to head of array data, 2) GET per-dimension mul-
tiplier which is used for calculating an offset for multi-dimensional
access, 3) calculate an address of the element with 1) and 2), and
4) GET the array element. In this case compiler reuses the per-
dimension multiplier. The aggregation pass combines a sequence
of GETs for Chapel array accesses into memcpys (see Section 4.1).
Overall, the existing LLVM passes and the aggregation pass reduce
33 GETs in the main loop in Line 3 to 12 GETs (see Line 5), which
contributes 181% (= 134% + 47%) of performance improvement
relative to LLVM-unopt in average on the Cray XC. Additionally,
the locality optimization pass detects locale-local array accesses
and converts 4 GETs which are possibly-remote at compile-time
but are actually-local at runtime into load access without commu-
nication calls in the main loop, which contributes additional 25%
of performance improvement in average on the Cray XC. These
optimizations actually eliminate significant number of GETs and
PUTs at runtime. For example, LLVM-gopt and LLVM-allopt
remove 63.6% and 75.5% of LOCAL_GET API calls respectively
(see Table 2).

5.2.2 Cholesky
Figure 7 shows program transformation of update_nondiagonal()

function by our optimizations, which is one of main computation
parts in Cholesky. For example, LLVM loop invariant code motion
pass moves 1 loop invariant GET of the 4 GETs in Line 12 to the
outside of the second innermost loop. Similarly, the pass moves 2
GETs out of 9 GETs in Line 14 to the outside of the loop. Overall,
the existing optimizations without the aggregation pass contributes
381% of performance improvement relative to LLVM-unopt in
average on the Cray XC. The aggregation pass does not contribute
performance improvement but Locality optimization contributes 4%,
which is invisible in Figure 6 though). Coalescing shows significant
performance improvement (1,565%).

5.2.3 NPB EP
There are two loops in the gaussPairsBatch() function, which is

a main computation of NBP EP. LLVM-gopt applies LICM to
1 GET in the first loop in Line 31 and aggregates a sequence of
GETs in the body of the second loop in Line 32. This contributes

132 (=127% + 5%) performance improvement in average on the
the Cray XC. Locality optimization eliminates an affinity check for
1 PUT in the body of the first loop in Line 34, which eventually
shows 6% performance improvement in average on the the Cray
XC. We also observed decreases in the number of puts and gets in
addition to reductions in runtime (See Table 2).

5.2.4 Sobel
Sobel shows similar trends to Smith-Waterman, since Sobel

has a number of array accesses for neighbor elements like Smith-
waterman, LLVM-gopt reduces 60 GETs to 15 GETs in the body
of main computation loop in Line 41, which is 104% performance
improvement in average on the Cray XC (the aggregation pass did
not find opportunities for optimization). These 15 GETs are even-
tually reduced to 3 GETs by detecting a local array in locality op-
timization, leading to an additional 3% performance improvement
in average on the Cray XC.

5.2.5 SSCA2 Kernel 4
The existing LICM optimization pass hoists a GET out of an

important loop. Overall, LLVM-gopt without aggregation shows
117% performance improvement. Additionally, the other part in
SSCA2 benefits from the aggregation pass, which shows 11% per-
formance improvement. Locality optimization attains additional
2% performance improvement in average on the Cray XC.

5.2.6 Stream-EP
LICM hoists 6 out of 8 GET calls out of the body of the main

computation loop in Line 54. These hoisted GETs retrieve a pointer
to array data and per-dimensional multiplier. This shows 234%
performance improvement in average on the Cray XC but the ag-
gregation pass does not help in this case. Additionally, Locality
optimization shows additional 4% performance improvement.

5.3 Comparison with the conventional Chapel
C-backend

Table 3 shows the execution time of the conventional C-backend
and our LLVM-backend ( LLVM-unopt and LLVM-allopt ). Note
that the numbers for LLVM-backend ( LLVM-unopt and LLVM-
allopt ) corresponds to the results shown in Figure 6.

While LLVM-allopt always outperforms LLVM-unopt , the
performance of the LLVM-backend is slower than that of the C-
backend in some cases. One potential problem with the LLVM



backend is the use of packed pointers. The C backend uses a struc-
ture representation of wide pointers, where each wide pointer is
actually a structure containing a node ID and a local pointer. The
LLVM version has to pack wide pointers into 64-bit quantities in
order to work around the limitations in LLVM 3.3 that every ad-
dress space have the same pointer size (For more details, see Sec-
tion 3.4). Packing wide pointers into 64-bit values adds two pri-
mary sources of overhead. First, it uses more instructions such
as bit shifting and masking in order to create and use wide point-
ers. Second, since the pointer values are now computed from inte-
gers, existing compiler optimization is less effective because alias
analysis is much more difficult. Once this limitation is addressed
and the LLVM backend uses a structure format for wide pointers,
we expect that the LLVM backend will consistently produce faster
distributed programs than the C backend because the C-backend
cannot perform these communication optimizations. In particular,
while the Chapel compiler does include communication optimiza-
tion at the AST level, the low-level communication optimizations
provided by our framework have no analogue when using the C
backend. Finally, note that the number of communication API calls
made in the generated code is similar for the C backend and for
LLVM-unopt. Thus, the number of communication calls removed
in Table 2 represent an improvement over using the C backend.

6. RELATED WORK

6.1 Communication optimizations for PGAS
languages

Communication optimization is important technique for distributed
memory applications. Compared with message-passing, the PGAS
programming model provides a more user friendly interface, but
relies on compiler optimizations for improved performance, espe-
cially for inter-node communications.

There is a lot of past work on optimizing communication in
PGAS programs. X10 [10] is one of the HPCS languages with
language-based notation for distributed arrays, global pointers, and
locality exploitation. In [4], Barik et al. focus on reducing com-
munication overheads across multiple nodes for distributed X10
programs. This work uses program transformation techniques to
enable message aggregation, reuse and eliminate redundant com-
munication. The relevant transformations includes scalar replace-
ment, object splitting, and loop transformations, such as loop dis-
tribution, scalar expansion, loop tiling, and loop splitting. Chan-
dra et.al. introduced a frontend approach [14] for enabling locality
optimization. They extended X10 with s special dependent type
system that provides place types which captures fine-grain locality
information. In compiler, they provided a type inference algorithm
for helping developer add type annotations.

UPC (Unified Parallel C) [13] is another mature PGAS system.
In [5], Barton et al. introduced the compiler technique that per-
forms affinity test of the upc_forall loop and eliminates accesses
to shared pointers proven by the compiler analysis to be local. In
[2], Alvanos et al. propose a communication optimization tech-
niques that utilizes both the static coalescing optimization and the
inspector-executor model.

The Fortran D compiler [17] introduces several program trans-
formation and communication optimizations that reduces commu-
nication overhead, such as message vectorization, message pipelin-
ing for distributed systems. In [12], the High Performance Fortran
Compiler merges communication events for different remote refer-
ences into a single event for regular applications.

For OpenSHMEM optimization, the compiler [23] replaces func-
tion calls of remote memory access with load / store operations with

shmem_ptr to enable vectorization in Xeon Phi processor.
The ZPL compiler [8] detects array constructs and performs sev-

eral communication optimizations at the array-level.
All of above works are language-specific and compiler-specific

optimizations, while in our proposed compiler optimization frame-
work, we demonstrate that using LLVM as a general platform and
plug-in program optimizations for distributed memory application
(i.e. PGAS program) is a flexible approach and easy to be adapted
to existing/new program languages.

6.2 LLVM Utilization for High-Performance
Computing

LLVM is widely used as compiler infrastructure in both academia
and industry. There have been several projects that explore the
use of LLVM as a program optimization tool for high performance
computing. For example, Intel SPMD Program Compiler [18] aims
to generate vectorized code for vector units. LLVM CUDA com-
piler [25] compiles CUDA C/C++, Fortran, and Domain Specific
Languages to NVVM IR [26], which is an extended version of
LLVM IR for GPGPU. This compiler then applies the LLVM-based
optimizations and generates a GPU binary. It is worth mentioning
that this compiler can distinguish several types of memory such as
shared memory, texture memory, and constant memory with the ad-
dress space feature in LLVM. One of prior approaches makes use
of NVVM IR to generate GPU code from Java 8 programs [19].

In contrast, our work is working toward building a general pro-
gram optimization framework for distributed memory applications,
which can support multiple programming languages, especially for
PGAS programming system for both runtime independent/depen-
dent program optimizations, especially for optimizing communica-
tion overhead.

7. CONCLUSION
In this paper, we proposed an LLVM-based optimization frame-

work for PGAS programs. Our compilation system uses the address
space feature in LLVM to differentiate between definitely-local and
possibly-remote memory accesses, and leverages the existing opti-
mization passes to do further elimination of communication over-
heads. Our experimental results show an average performance im-
provement of 3.5× and 3.4× on 64 nodes of a Cray XC30 super-
computer and 32 nodes of a Westmere cluster, respectively. These
experiments shows that our approach effectively accelerates the ex-
ecution of PGAS programs.

This work shows that the use of LLVM is a promising way to en-
hance the performance of PGAS programs. In the future, we plan
to extend our compilation system to support a wide range of PGAS
language features such as task parallel constructs and synchroniza-
tions by introducing uniform parallel intermediate representations
(PIRs) [32].
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Figure 6: Comparison of performance improvement relative to LLVM-unoptimized on 1 locale on the Westmere Cluster and the
Cray XC supercomputer and Breakdown for performance improvement. LLVM-gopt : existing optimizations + aggregation (–llvm-
wide-opt in the standard Chapel compiler), LLVM-allopt : LLVM-gopt + locality optimization + coalescing



1 Smith-Waterman
2 // LLVM-unopt
3 for (ii, jj) in tile { 33 GETs + 1 PUT }
4 // LLVM-gopt
5 for (ii, jj) in tile { 12 GETs + 1 PUT }
6 // LLVM-allopt
7 for (ii, jj) in tile { 8 GETs + 1 PUT }
8 Cholesky
9 // LLVM-unopt

10 for jB in zero..tileSize -1 do {
11 for kB in zero..tileSize -1 do {
12 4 GETs
13 for iB in zero..tileSize -1 do {
14 9 GETs + 1 PUT }}}
15 // LLVM-gopt
16 for jB in zero..tileSize -1 do {
17 1 GETs
18 for kB in zero..tileSize -1 do {
19 3 GETs
20 for iB in zero..tileSize -1 do {
21 2 GETs + 1 PUT }}}
22 // LLVM-allopt
23 bulk_transfer();
24 for jB in zero..tileSize -1 do {
25 for kB in zero..tileSize -1 do {
26 1 GET
27 for iB in zero..tileSize -1 do {
28 1 GET + 1 PUT }}}
29 NPB EP
30 // LLVM-unopt
31 for i in pairs { 2 GETs + 2 PUTs }
32 for i in pairs { 8 GETs + 1 PUT }
33 // LLVM-gopt
34 for i in pairs { 1 GET + 2 PUTs }
35 for i in pairs { 3 GETs + 1 PUT }
36 // LLVM-allopt
37 for i in pairs { 1 GETs + 1 PUT }
38 for i in pairs { 3 GETs + 1 PUT }
39 Sobel
40 // LLVM-unopt
41 for (ii, jj) in tile { 60 GETs + 2 PUTs }
42 // LLVM-gopt
43 for (ii, jj) in tile { 15 GETs + 2 PUTs }
44 // LLVM-allopt
45 for (ii, jj) in tile { 3 GETs + 2 PUTs }
46 SSCA2 Kernel 4
47 // LLVM-unopt
48 forall v in G.FilteredNeighbors(...) { 3 GETs }
49 // LLVM-gopt, LLVM-allopt
50 1 GET
51 forall v in G.FilteredNeighbors(...) { 2 GETs }
52 Stream-EP
53 // LLVM-unopt
54 forall (a, b, c) in zip(A, B, C) { 8 GETs + 1PUT }
55 // LLVM-gopt, LLVM-allopt
56 6 GETs
57 forall (a, b, c) in zip(A, B, C) { 2GETs + 1PUT }

Figure 7: How optimizations work for six benchmarks.
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